Векторная диаграмма токов и напряжений

Векторные диаграммы и комплексное представление

Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy — оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).

Тогда вектор длиной A, вращающийся в комплексной плоскости с постоянной угловой скоростью ω с начальным углом φ, запишется как комплексное число

Aei(ωt+φ),{\displaystyle Ae^{i(\omega t+\varphi _{0})},}

а его действительная часть

Re(Aei(ωt+φ))=Acos(ωt+φ),{\displaystyle \mathrm {Re} {\big (}Ae^{i(\omega t+\varphi _{0})}{\big )}=A\mathrm {cos} {\big (}\omega t+\varphi _{0}{\big )},}

-есть гармоническое колебание с циклической частотой ω и начальной фазой φ.

Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.

  • Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.
  • Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, так как естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.
  • Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) — более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.

Построение векторной диаграммы напряжений.

4.1 На комплексной плоскости строятся векторы фазных напряжений питающей сети А, В, С; соединив их концы, получают векторы линейных напряжений АВ, ВС, СА. Затем строятся векторы фазных напряжений нагрузки А нагр., В нагр., С нагр. Для их построения можно использовать обе формы записи комплексов токов и напряжений.

Например, вектор А нагр. строится по показательной форме следующим образом: от оси +1 под углом 6 10 , т.е. против часовой стрелки, откладывается отрезок длиной 6,96 см; по алгебраической форме его можно построить, отложив по оси +1 отрезок длиной 6,81 см, а по оси + j отрезок длиной 0,76 см, концы этих отрезков являются координатами конца вектора А нагр.

4.2 Т.к. линейные напряжения нагрузки заданы питающей сетью, для определения положения нейтрали нагрузки необходимо выполнить параллельный перенос векторов фазных напряжений нагрузки А нагр., В нагр., С нагр. так, чтобы их концы совпали с концами фазных напряжений питающей сети.

Точка 0, в которой окажутся их начала, есть нейтраль нагрузки. В этой точке находится конец вектора напряжения смещения нейтрали 0, его начало расположено в точке 0. Этот вектор можно также построить, используя данные таблицы 9.

Векторная диаграмма для первой ветви

Рис. 2

Спроецируем вектор тока I1 на оси координат. Горизонтальная составляющая тока будет представлять собой активную составляющую I1R, а вертикальная — I1L. Количественные значения этих составляющих будут равны:

Во вторую ветвь включен конденсатор. Его сопротивление

Этот ток опережает по фазе напряжение на 90°. Для определения тока I в неразветвленной части цепи воспользуемся формулой:

Его значение можно получить и графическим путем, сложив векторы I1 и I2 (рис. 3). Угол сдвига между током и напряжением обозначим буквой φ. Здесь возможны различные режимы в работе цепи. При φ = +90° преобладающим будет емкостный ток, при φ = -90° — индуктивный.

Вы здесь

Онлайн калькулятор — Учеба и наука — Математика — Аналитическая геометрия — Векторы

Векторы

Векторы представляют собой особый раздел аналитической геометрии, который в том числе оказал значительное влияние на развитие физики. Сам по себе вектор выглядит как отрезок, который имеет начало и имеет конец, определен заданной конечными точками длиной этого отрезка. Но внутри вектора кроется множество других скрытых функций, за счет того что вектор задает направление. Поэтому если для отрезка не имеет значения какая точка названа началом, а какая концом, и чаще просто применяется принцип чтения «слева направо», то для векторов AB и BA – это диаметрально противоположные понятия.

Итак, в векторе присутствует две важных составляющих – это его длина и направление. Тем не менее, координатами вектора задается не его фактическая длина, а местоположение на плоскости или в пространстве. Поэтому длина вектора, иначе называемая модуль вектора, вычисляется, используя прямоугольный треугольник с осями координат. Дальнейшие действия с вектором также чаще используют именно его координаты, нежели фактическую длину

Работе с векторами можно провести аналогию с целыми числами, — как только появляются отрицательные числа на числовой оси, приходится не только считать значение примера, но и все время обращать внимание на знаки. Так и с векторами, во всех действиях – будь то сложение, вычитание, умножение скалярное или векторное и другие действия, приходится не только учитывать реальные масштабы вектора – координаты, длина или угол, но и принимать в расчет его направление

К слову, направления векторов также находят отражение в знаках – обратный изначальному вектор всегда будет со знаком «минус».

В данном разделе разложены все основные действия с векторами, такие как нахождение длины вектора, координат вектора, сложение векторов, вычитание векторов, скалярное произведение векторов, векторное произведение векторов, смешанное произведение трех векторов, вычисление угла между векторами и другие. Все расчет можно произвести для векторов на плоскости или для векторов в пространстве. Также доступен векторный калькулятор, который вычисляет все возможные параметры одного и более векторов, с заданными координатами точек вектора.

Векторный калькулятор

Координаты вектора по двум точкам

Направляющие косинусы вектора

Длина вектора, модуль вектора

Сложение векторов

Вычитание векторов

Умножение вектора на число

Скалярное произведение векторов

Угол между векторами

Проекция вектора на вектор

Векторное произведение векторов

Смешанное произведение векторов

Коллинеарность и ортогональность векторов

Компланарность векторов

Векторная диаграмма в режиме резонанса токов

Рис. 4

Рассмотренный выше случай параллельного соединения R, L и C может быть также проанализирован с точки зрения повышения cosφ для электроустановок. Известно, что cosφ является технико-экономическим параметром в работе электроустановок. Определяется он по формуле:

cosφ = P / S, где

Р — активная мощность электроустановок, кВт;
S — полная мощность электроустановок, кВт.

На практике cosφ определяют снятием со счетчиков показаний активной и реактивной энергии и, разделив одно показание на другое, получают tgφ. Далее по таблицам находят и cosφ.

Чем больше cosφ, тем экономичнее работает энергосистема, так как при одних и тех же значениях тока и напряжения (на которые рассчитан генератор) от него можно получить большую активную мощность.
Снижение cosφ приводит к неполному использованию оборудования и при этом уменьшается КПД установки. Тарифы на электроэнергию предусматривают меньшую стоимость 1 киловатт-часа при высоком cosφ, в сравнении с низким.

Мероприятия по повышению cosφ:

  • недопущение холостых ходов электрооборудования;
  • полная загрузка электродвигателей, трансформаторов и т.д.

Кроме этого, на cosφ положительно сказывается подключение к сети статических конденсаторов.

Векторная графика

В отличие от растровых, векторные изображения состоят уже не из пикселей, а из множества опорных точек и соединяющих их кривых. Векторное изображение описывается математическими формулами и, соответственно, не требует наличия информации о каждом пикселе. Сколько ни увеличивай масштаб векторного изображения, вы никогда не увидите пикселей.

Самые популярные векторные форматы: SVG, AI.

Векторное изображение и его увеличенный фрагмент

Применение

Векторная графика используется для иллюстраций, иконок, логотипов и технических чертежей, но сложна для воспроизведения фотореалистичных изображений. Самый популярный редактор векторной графики — Adobe Illustrator.

Пример использования векторной графики: социальные иконки (источник изображения: MacKenzie www.freevector.com/social-websites-icons)
Пример использования векторной графики: иллюстрация (автор изображения: Катя Климович)

Преимущества

  • Малый объём занимаемой памяти — векторные изображения имеют меньший размер, так как содержат в себе малое количество информации.
  • Векторные изображения отлично масштабируются — можно бесконечно изменять размер изображения без потерь качества.

Недостатки

  • Чтобы отобразить векторное изображение требуется произвести ряд вычислений, соответственно, сложные изображения могут требовать повышенных вычислительных мощностей.
  • Не каждая графическая сцена может быть представлена в векторном виде: для сложного изображения с широкой цветовой гаммой может потребоваться огромное количество точек и кривых, что сведёт «на нет» все преимущества векторной графики.
  • Процесс создания и редактирования векторной графики отличается от привычной многим модели — для работы с вектором потребуются дополнительные знания.

Опыт холостого хода

После изготовления трансформатора необходимо провести ряд испытаний, одним из которых является опытом холостого хода. Данное испытание трансформатора проводится при разомкнутой вторичной обмотке и подачей номинального напряжения на первичную обмотку. По результатам проведения опыта холостого хода определяют коэффициент трансформации и мощность потерь в магнитопроводе.

Для проведения опыта холостого хода собирают схему изображенную ниже

Как видно на схеме к первичной обмотке трансформатора необходимо подключить вольтметр PV1, амперметр РА1 и ваттметр PW1, а к вторичной обмотке – вольтметр PV2.

Для снятия характеристик холостого хода трансформатора на его первичную обмотку подают номинальное напряжение = UH, которое можно изменять при необходимости снятия динамических характеристик примерно от 30% до 110% UH. После подачи напряжения в первичную обмотку снимают показания по приборам: ток холостого хода IХХ, мощность холостого хода РХХ, напряжение на вторичной обмотке U2 трансформатора.

По результатам проведения опыта холостого хода можно определить следующие параметры:

— процентное отношение тока холостого тока IXX%

где IH – номинальное значение тока в первичной обмотке трансформатора.

— коэффициент трансформации трансформатора k

где U1 и U2 – напряжения, снимаемые с вольтметров PV1 и PV2, соответственно.

— активное сопротивление намагничивающего контура RC

где РХХ – мощность, снимаемая с ваттметра PW1.

— полное сопротивление намагничивающего контура ZC

— реактивное сопротивление намагничивающего контура ХС

— коэффициент мощности холостого хода cos φXX

При проведении опыта холостого хода следует отметить, что в начальный момент подачи напряжения возникает недопустимо большой ток в разы превышающий номинальный, а так как ток холостого хода составляет 3 – 10 % от номинального тока, то пусковой ток превышает ток холостого тока в десятки раз. Поэтому в начальный момент необходимо замкнуть выводы амперметра РА1.

Кроме опыта холостого хода для испытания трансформатора проводят опыт короткого замыкания, о котором я расскажу в следующей статье.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ


    • Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте


      • Контрольная работа №1

      • Контрольная работа №2
  • Электротехника и основы электроники


    • Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил


      • Контрольная работа № 1 Электрические цепи

      • Контрольная работа № 2 Трансформаторы и электрические машины

      • Контрольная работа № 3 Основы электроники
  • Теоретические основы электротехники ТОЭ


    • Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009

    • Переходные процессы Переходные процессы в электрических цепях

    • Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов


      • Задание 1 Линейные электрические цепи постоянного и синусоидального тока


        • Задача 1.1 Линейные электрические цепи постоянного тока

        • Задача 1.2 Линейные электрические цепи синусоидального тока

      • Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками

    • Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010

    • Трехфазные цепи. Расчет трехфазных цепей

    • УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ

    • Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ


    • Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте


      • Контрольная работа №1

      • Контрольная работа №2
  • Электротехника и основы электроники


    • Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил


      • Контрольная работа № 1 Электрические цепи

      • Контрольная работа № 2 Трансформаторы и электрические машины

      • Контрольная работа № 3 Основы электроники
  • Теоретические основы электротехники ТОЭ


    • Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009

    • Переходные процессы Переходные процессы в электрических цепях

    • Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов


      • Задание 1 Линейные электрические цепи постоянного и синусоидального тока


        • Задача 1.1 Линейные электрические цепи постоянного тока

        • Задача 1.2 Линейные электрические цепи синусоидального тока

      • Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками

    • Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010

    • Трехфазные цепи. Расчет трехфазных цепей

    • УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ

    • Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока
Оцените статью:
Оставить комментарий