Векторная физическая величина

Скалярное и векторное произведения

Умножение векторов можно выполнять двумя различными способами: скалярно и векторно.

Скалярным произведением векторных величин называется такой способ их умножения, результатом которого является одно число, то есть скаляр. В матричном виде скалярное произведение записывается как строки компонента 1-го вектора на столбец компонент 2-го. В итоге в n-мерном пространстве получается формула: (A→*B→) = a1*b1+a2*b2+…+an*bn.

В 3-мерном пространстве можно определить скалярное произведение иначе. Для этого нужно умножить модули соответствующих векторов на косинус угла между ними, то есть (A→*B→) = |A→|*|B→|*cos(θAB). Из этой формулы следует, что если вектора направлены в одном направлении, то скалярное произведение равно умножению их модулей, а если вектора перпендикулярны друг другу, тогда оно оказывается равным нулю. Отметим, что модуль вектора в прямоугольной системе координат определяется как квадратный корень от суммы квадратов компонент этого вектора.

Под векторным произведением понимают такое умножение вектора на вектор, результатом которого также является вектор. Его направление оказывается перпендикулярно каждому из умножаемых параметров, а длина равна произведению модулей векторов на синус угла между ними, то есть A→ x B→ = |A→|*|B→|*sin(θAB), где значок «x» обозначает векторное произведение. В матричном виде этот вид произведения представляется как определитель, строками которого являются элементарные вектора данной системы координат и компоненты каждого вектора.

Как скалярное, так и векторное произведения используют в математике и физике для определения многих величин, например, площади и объема фигур.

Далее в статье приводятся примеры векторных величин в физике.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснён выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трёхмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяжённостью, тем не менее имеет вполне определённое направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже — к одному вектору — вектору элементарного перемещения, а более правильно было бы сказать — произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трёхмерного случая классической физики и для четырёхмерной пространственно-временной формулировки, обычной для современной физики.

Классический трёхмерный случай

Будем исходить из обычного трёхмерного «геометрического» пространства, в котором мы живём и можем перемещаться.

В качестве исходного и образцового вектора возьмём вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда даёт новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами, поэтому заметим, что и векторное произведение двух векторов даёт новый вектор.

Также новый вектор даёт дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объёму).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr,
мы легко понимаем, что векторами являются (поскольку время — скаляр) такие кинематические величины, как

  • скорость v=drdt,{\displaystyle \mathbf {v} =d\mathbf {r} /dt,}
  • ускорение a=dvdt.{\displaystyle \mathbf {a} =d\mathbf {v} /dt.}

Из скорости и ускорения, умножением на скаляр (массу), появляются

  • импульс,
  • сила.

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • угловая скорость,
  • момент импульса — появляются совершенно понятным образом.

с помощью формулы силы Лоренца напряжённость электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).

Современный четырёхмерный случай

Ту же процедуру можно проделать исходя из четырёхмерного перемещения.
Оказывается, что все 4-векторные величины «происходят» от 4-перемещения,
являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.

Вектор и скаляр в формулах

В учебниках по физике часто встречаются формулы, в которых есть стрелочка сверху. Вспомните второй закон Ньютона. Сила («F» со стрелочкой сверху) равна произведению массы («m») и ускорения («a» со стрелочкой сверху). Как говорилось выше, сила и ускорение являются величинами векторными, а вот масса — скалярной.

К сожалению, не во всех изданиях есть обозначение этих величин. Наверное, сделано это для упрощения, чтобы школьников не вводить в заблуждение. Лучше всего покупать те книги и справочники, в которых обозначены векторы в формулах.

То, какая величина является векторной, покажет иллюстрация

Рекомендуется обращать внимание на картинки и схемы на уроках физики. Векторные величины имеют направление

Куда направлена сила тяжести? Конечно же, вниз. Значит, стрелочка будет показана в том же направлении.

В технических вузах изучают физику углубленно. В рамках многих дисциплин преподаватели рассказывают о том, какие величины являются скалярными и векторными. Такие знания требуются в сферах: строительство, транспорт, естественные науки.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль. Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора. Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Если проанализировать все вышесказанное, то можно сделать вывод, что все направленные отрезки определяют вектора. Два отрезка будут определять один вектор только в том случае, если они являются равными. При сравнении векторов действует тоже правило, что и при сравнении скалярных величин. Равенство означает полное совпадение по всем параметрам.

Примеры векторов. Как они обозначаются

Что подразумевается под вектором? То, что характеризует движение

Не важно, в пространстве или на плоскости. Какая величина является векторной вообще? Например, летит самолет с определенной скоростью на какой-то высоте, имеет конкретную массу, начал движение из аэропорта с нужным ускорением

Что относится к движению самолета? Что заставило его лететь? Конечно, ускорение, скорость. Векторные величины из курса физики являются наглядными примерами. Говоря прямо, векторная величина связана с движением, перемещением.

Вода тоже движется с определенной скоростью с высоты горы. Видите? Движение осуществляется за счет не объема или массы, а именно скорости. Теннисист дает возможность мячику двигаться при помощи ракетки. Он задает ускорение. К слову сказать, приложенная в данном случае сила также является векторной величиной. Потому что она получается вследствие заданных скоростей и ускорений. Сила способна также меняться, осуществлять конкретные действия. Ветер, который колышет листья на деревьях, тоже можно считать примером. Так как имеется скорость.

Задача о переправе через реку

Условие. Ширина реки по всей ее длине одинакова и равна l, ее берега параллельны. Известна скорость течения воды в реке v1 и собственная скорость катера v2. 1). При переправе нос катера направлен строго к противоположному берегу. На какое расстояние s его снесет вниз по течению? 2). Под каким углом α нужно направить нос катера, чтобы он достиг противоположного берега строго перпендикулярно к точке отправления? Сколько времени t потребуется на такую переправу?

Решение. 1). Полная скорость катера является векторной суммой двух величин. Первая из них течение реки, которое направлено вдоль берегов. Вторая — собственная скорость катера, перпендикулярная берегам. На чертеже получается два подобных треугольника. Первый образован шириной реки и расстоянием, на которое сносит катер. Второй — векторами скоростей.

Из них следует такая запись: s / l = v1 / v2. После преобразования получается формула для искомой величины: s = l * (v1 / v2).

2). В этом варианте задачи вектор полной скорости перпендикулярен берегам. Он равен векторной сумме v1 и v2. Синус угла, на который должен отклоняться вектор собственной скорости, равен отношению модулей v1 и v2. Для расчета времени движения потребуется разделить ширину реки на сосчитанную полную скорость. Значение последней вычисляется по теореме Пифагора.

v = √(v22 – v12), тогда t = l / (√(v22 – v12)).

Ответ. 1). s = l * (v1 / v2), 2). sin α = v1 / v2, t = l / (√(v22 – v12)).

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

Величины, которые характеризуются только числовым значением, называются скалярными
или скалярами
.

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

Величины, которые характеризуются числовым значением и направлением, называются векторными
или векторами
.

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается \(\vec F\) или F

. Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F
или \(\left|\vec F \right|\).

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А
на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B
на рис. 1).

Рис. 1.

Два вектора называются равными
, если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы \(\vec F_1 =\vec F_2\).

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых \(\upsilon_1\) = 2 м/c, \(\upsilon_2\) = 3 м/c.

Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор \(\Delta\vec r\) на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м).

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х
. Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5 вектор \(\Delta\vec r\) задан двумя числами b
и \(\alpha\) , указывающими длину и направление вектора.

Задача о неупругом ударе

Условие. На рельсах стоит неподвижная платформа. К ней приближается вагон со скоростью 4 м/с. Массы платформы и вагона — 10 и 40 тонн соответственно. Вагон ударяется о платформу, происходит автосцеп. Необходимо вычислить скорость системы «вагон-платформа» после удара.

Решение. Сначала требуется ввести обозначения: скорость вагона до удара — v1, вагона с платформой после сцепки — v, масса вагона m1, платформы — m2. По условию задачи необходимо узнать значение скорости v.

Правила решения подобных заданий требуют схематичного изображения системы до и после взаимодействия. Ось OX разумно направить вдоль рельсов в ту сторону, куда движется вагон.

В данных условиях систему вагонов можно считать замкнутой. Это определяется тем, что внешними силами можно пренебречь. Сила тяжести и реакция опоры уравновешены, а трение о рельсы не учитывается.

Согласно закону сохранения импульса, их векторная сумма до взаимодействия вагона и платформы равна общему для сцепки после удара. Сначала платформа не двигалась, поэтому ее импульс был равен нулю. Перемещался только вагон, его импульс — произведение m1 и v1.

Так как удар был неупругий, то есть вагон сцепился с платформой, и дальше он стали катиться вместе в ту же сторону, то импульс системы не изменил направления. Но его значение стало другим. А именно произведением суммы массы вагона с платформой и искомой скорости.

Можно записать такое равенство: m1 * v1 = (m1 + m2) * v. Оно будет верно для проекции векторов импульсов на выбранную ось. Из него легко вывести равенство, которое потребуется для вычисления искомой скорости: v = m1 * v1 / (m1 + m2).

По правилам следует перевести значения для массы из тонн в килограммы. Поэтому при подстановке их в формулу следует сначала умножить известные величины на тысячу. Простые расчеты дают число 0,75 м/с.

Ответ. Скорость вагона с платформой равна 0,75 м/с.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках. У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология. Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.

Некоторые формулы векторной алгебры используются в таких областях науки, как:

  1. Сопромат.
  2. Кинематика.
  3. Облучение и электрическое освещение.
  4. Прикладная механика.
  5. Гидравлика.
  6. Электрические машины.
  7. Теоретическая механика.
  8. Физика.

Четкое осознание разницы между векторной и скалярной величиной позволит специалистам решать сложные задачи и более подробно характеризовать используемые данные.

Умножение вектора на скаляр.

Произведение mA или Am, где m (m 0) – скаляр, а A – ненулевой вектор, определяется как другой вектор, который в m раз длиннее A и имеет тоже направление что и A, если число m положительно, и противоположное, если m отрицательно, как показано на рис. 4, где m равно 2 и –1/2 соответственно. Кроме того, 1A = A, т.е. при умножении на 1 вектор не изменяется. Величина –1A – вектор, равный A по длине, но противоположный по направлению, обычно записывается как –A. Если А – нулевой вектор и(или) m = 0, то mA – нулевой вектор. Умножение дистрибутивно, т.е.

Мы можем складывать любое число векторов, причем порядок слагаемых не влияет на результат. Верно и обратное: любой вектор раскладывается на две или более «компоненты», т.е. на два вектора или более, которые, будучи сложенными, в качестве результирующего дадут исходный вектор. Например, на рис. 2, A и B – компоненты C.

Многие математические действия с векторами упрощаются, если разложить вектор на три компоненты по трем взаимно перпендикулярным направлениям. Выберем правую систему декартовых координат с осями Ox, Oy и Oz как показано на рис. 5. Под правой системой координат мы подразумеваем, что оси x, y и z располагаются так, как могут быть расположены соответственно большой, указательный и средний пальцы правой руки. Из одной правой системы координат всегда можно получить другую правую систему координат соответствующим вращением. На рис. 5, показано разложение вектор A на три компоненты и . Они в сумме составляют вектор A, так как

Следовательно,

Можно было бы также сначала сложить и получить , а затем к прибавить .

Проекции вектора А на три координатные оси, обозначенные Ax, Ay и Az называются «скалярными компонентами» вектора A:

где a, b и g – углы между A и тремя координатными осями. Теперь введем три вектора единичной длины i, j и k (орты), имеющие то же самое направление, что и соответствующие оси x, y и z. Тогда, если Ax умножить на i, то полученное произведение – это вектор, равный , и

Два вектора равны тогда и только тогда, когда равны их соответствующие скалярные компоненты. Таким образом, A = B тогда и только тогда, когда Ax = Bx, Ay = By, Az = Bz.

Два вектора можно сложить, складывая их компоненты:

Кроме того, по теореме Пифагора:

Тройные произведения.

Из трех векторов мы можем сформировать следующие тройные произведения: вектор (AЧB) ґ C; вектор (A ґ B) ґ C; скаляр (A ґ B)ЧC.

Первый тип – произведение вектора C и скаляра AЧB; о таких произведениях мы уже говорили. Второй тип называется двойным векторным произведением; вектор A ґ B перпендикулярен к плоскости, где лежат A и B, и поэтому (A ґ B)ґ C – вектор, лежащий в плоскости A и B и перпендикулярный C. Следовательно, в общем случае, (A ґ B)ґ C A ґ (B ґ C). Записав A, B и C через их координаты (компоненты) по осям x, y и z и умножив, можно показать, что A ґ (B ґ C) = B ґ (AЧC) – Cґ (AЧB). Третий тип произведения, который возникает при расчетах решетки в физике твердого тела, численно равен объему параллелепипеда с ребрами A, B, C. Так как (A ґ B)ЧC = AЧ(B ґ C), знаки скалярного и векторного умножений можно менять местами, и произведение часто записывается как (A B C). Это произведение равно определителю

Заметим, что (A B C) = 0, если все три вектора лежат в одной и той же плоскости или, если А = или (и) В = или (и) С = .

Понятие вектора в классической геометрии

Вектор в геометрии — отрезок, для которого указано, какая из его точек является началом, а какая — концом. То есть, говоря проще, вектором называется направленный отрезок.

Соответственно, обозначается вектор (что такое — рассмотрели выше), как и отрезок, то есть двумя заглавными буквами латинского алфавита с добавлением сверху черты или стрелки, направленной вправо. Также его можно подписать строчной (маленькой) буквой латинского алфавита с чертой или стрелкой. Стрелка всегда направлена вправо и не меняется в зависимости от расположения вектора.

Таким образом, вектор имеет направление и длину.

В обозначении вектора содержится и его направление. Выражается это так, как на рисунке ниже.

Изменение направления меняет значение вектора на противоположное.

Длиной вектора называется длина отрезка, от которого он образован. Обозначается он как модуль от вектора. Это показано на рисунке ниже.

Соответственно, нулевым является вектор, длина которого равна нулю. Из этого следует, что нулевой вектор представляет собой точку, при чем в ней совпадают точки начала и конца.

Длина вектора — величина всегда не отрицательная. Иначе говоря, если есть отрезок, то он в обязательном порядке обладает некоторой длиной или же является точкой, тогда его длина равна нулю.

Само понятие точки является базовым и определения не имеет.

Математические операции над векторами

Векторные величины, так же как и обычные числа, можно складывать, вычитать и умножать как друг с другом, так и с другими числами.

Под суммой двух векторов понимают третий вектор, который получается, если суммируемые параметры расположить так, чтобы конец первого совпадал с началом второго вектора, а затем, соединить начало первого и конец второго. Для выполнения этого математического действия разработаны три основных метода:

  1. Метод параллелограмма, заключающийся в построении геометрической фигуры на двух векторах, которые выходят из одной и той же точки пространства. Диагональ этого параллелограмма, которая выходит из общей точки начала векторов, будет являться их суммой.
  2. Метод многоугольника, суть которого состоит в том, что начало каждого последующего вектора следует располагать в конце предыдущего, тогда суммарный вектор будет соединять начало первого и конец последнего.
  3. Аналитический метод, который состоит в попарном сложении соответствующих компонент известных векторов.

Что касается разницы векторных величин, то ее можно заменить сложением первого параметра с тем, который противоположен по направлению второму.

Умножение вектора на некоторое число A выполняется по простому правилу: на это число следует умножить каждую компоненту вектора. В результате получается также вектор, модуль которого в A раз больше исходного, а направление либо совпадает, либо противоположно исходному, все зависит от знака числа A.

Делить вектор или число на него нельзя, а вот деление вектора на число A аналогично умножению на число 1/A.

Скалярные произведения.

Если под действием некоторой силы F точка, к которой она приложена, перемещается на расстояние r, то выполненная работа равна произведению r и компоненты F в направлении r. Эта компонента равна F cos бF, rс, где бF, rс – угол между F и r, т.е.

Произведенная работа = Fr cos бF, rс.

Это – пример физического обоснования скалярного произведения, определенного для любых двух векторов A, B посредством формулы

AЧB = AB cos бA, Bс.

Так как все величины правой части уравнения – скаляры, то

AЧB = BЧA;

следовательно, скалярное умножение коммутативно.

Скалярное умножение также обладает свойством дистрибутивности:

AЧ(B + С) = AЧB + AЧС.

Если векторы A и B перпендикулярны, то cos бA, Bс равен нулю, и, поэтому, AЧB = 0, даже если ни A,ни B не равны нулю. Именно поэтому мы не можем делить на вектор. Допустим, что мы разделили обе части уравнения AЧB = AЧC на A. Это дало бы B = C, и, если бы можно было бы выполнить деление, то это равенство стало бы единственным возможным результатом. Однако, если мы перепишем уравнение AЧB = AЧC в виде AЧ(BC) = 0 и вспомним, что (BC) – вектор, то ясно, что (BC) необязательно равен нулю и, следовательно, B не должен быть равным C. Эти противоречивые результаты показывают, что векторное деление невозможно.

Скалярное произведение дает еще один способ записи численного значения (модуля) вектора:

AЧA = AAЧcos 0° = A2;

поэтому

Скалярное произведение можно записать и другим способом. Для этого вспомним, что:

A = Ax i + Ayj + Azk.

Заметим, что

Тогда,

Поскольку последнее уравнение содержит x, y и z в качестве нижних индексов, уравнение, казалось бы, зависит от выбранной конкретной системы координат. Однако это не так, что видноиз определения, которое не зависит от выбранных координатных осей.

Градиент.

В физике часто приходится иметь дело с векторными или скалярными величинами, которые меняются от точки к точке в заданной области. Такие области называются «полями». Например, скаляр может быть температурой или давлением; вектор может быть скоростью движущейся жидкости или электростатическим полем системы зарядов. Если мы выбрали некоторую систему координат, то любой точке P (x, y, z) в заданной области соответствует некоторый радиус-вектор r (= xi + yj + zk) и также значение векторной величины U (r) или скаляра f(r), связанных с ним. Предположим, что U и f определены в области однозначно; т.е. каждой точке соответствует одна и только одна величина U или f, хотя различные точки могут, конечно, иметь различные значения. Допустим, что мы хотим описать скорость, с которой U и f изменяются при передвижении по этой области.

Простые частные производные, такие, как U/x и ¶f/y, нас не устраивают, потому что они зависят от конкретно выбранных координатных осей. Однако можно ввести векторный дифференциальный оператор, независимый от выбора осей координат; этот оператор называется «градиентом».

Пусть мы имеем дело со скалярным полем f. Сначала в качестве примера рассмотрим контурную карту области страны. В этом случае f – высота над уровнем моря; контурные линии соединяют точки с одним и тем же значением f. При движении вдоль любой из этих линий f не меняется; если двигаться перпендикулярно этим линиям, то скорость изменения f будет максимальной. Мы можем каждой точке сопоставить вектор, указывающий величину и направление максимального изменения скорости f; такая карта и некоторые из этих векторов показаны на рис. 11. Если мы проделаем это для каждой точки поля, то получим векторное поле, связанное со скалярным полем f. Это поле вектора, называемого «градиентом» f, который записывается как grad f или Сf(символ С также называется «набла»).

В случае трех измерений, контурные линии становятся поверхностями. Малое смещение Dr (= iDx + jDy + kDz) приводит к изменению f, которое записывается как

где точками обозначены члены более высоких порядков. Это выражение можно записать в виде скалярного произведения

Разделим правую и левую части этого равенства на Ds, и пусть Ds стремится к нулю; тогда

где dr/ds – единичный вектор в выбранном направлении. Выражение в круглых скобках – вектор, зависящий от выбранной точки. Таким образом, df/ds имеет максимальное значение, когда dr/ds указывает в том же направлении, выражение, стоящее в скобках, является градиентом. Таким образом,

– вектор, равный по величине и совпадающий по направлению с максимальной скоростью изменения f относительно координат. Градиент f часто записывается в виде

Это означает, что оператор С существует сам по себе. Во многих случаях он ведет себя, как вектор, и фактически является «векторным дифференциальным оператором» – одним из наиболее важных дифференциальных операторов в физике. Несмотря на то, что С содержит единичные векторы i, j и k, его физический смысл не зависит от выбранной системы координат.

Какова связь между Сf и f? Прежде всего предположим, что f определяет потенциал в любой точке. При любом малом смещении Dr величина f изменится на

Если q – величина (например масса, заряд), перемещенная на Dr, то работа, выполненная при перемещении q на Dr равна

Так как Dr – перемещение, то qСf – сила; –Сf – напряженность (сила на единицу количества), связанная с f. Например, пустьU – электростатический потенциал; тогда E – напряженность электрического поля, задается формулой

E = –СU.

Допустим, что U создается точечным электрическим зарядом в q кулонов, помещенным в начало координат. Значение U в точке P (x, y, z) с радиус-вектором r задается формулой

где e0 – диэлектрическая постоянная свободного пространства. Поэтому

откуда следует, что E действует в направлении r и его величина равна q/(4pe0r3).

Зная скалярное поле, можно определить связанное с ним векторное поле. Также возможно и обратное. С точки зрения математической обработки скалярными полями оперировать легче, чем векторными, так как они задаются одной функцией координат, в то время как векторное поле требует три функции, соответствующие компонентам вектора в трех направлениях. Таким образом, возникает вопрос: дано векторное поле, может ли мы записать связанное с ним скалярное поле?

Теорема дивергенции (теорема Остроградского – Гаусса)

Теорема дивергенции (теорема Остроградского – Гаусса) является обобщением формулы (4) для конечных объемов. Она утверждает, что для некоторого объема V, ограниченного замкнутой поверхностью S,

и справедлива для всех непрерывных векторных функций U, имеющих непрерывные первые производные всюду в V и на S. Мы не будем приводить здесь доказательство этой теоремы, но ее справедливость можно понять интуитивно, представляя объем V разделенным на ячейки. Поток U через поверхность, общую для двух ячеек обращается в нуль, и только ячейки, находящиеся на границе S внесут вклад в поверхностный интеграл.

История

Интуитивно вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел (Гаусс, 1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (лат. vector, несущий) и описал некоторые операции векторного анализа

Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид.

Дивергенция и ротор.

Мы видели результат действия С на скалярную функцию. Что произойдет, если С применить к вектору? Имеются две возможности: пусть U (x, y, z) – вектор; тогда мы можем образовать векторное и скалярное произведения следующим образом:

Первое из этих выражений – скаляр, называемый дивергенцией U (обозначается divU); второе – вектор, названный ротор U (обозначается rotU).

Эти дифференциальные функции, дивергенция и ротор, широко используются в математической физике.

Представьте, что U – некоторый вектор и что он и его первые производные непрерывны в некоторой области. Пусть P – точка в этой области, окруженная малой замкнутой поверхностью S, ограничивающей объем DV. Пусть n – единичный вектор, перпендикулярный к этой поверхности в каждой точке (n меняет направление при движении вокруг поверхности, но всегда имеет единичную длину); пусть n направлен наружу. Покажем, что

и

Здесь S указывает, что эти интегралы берутся по всей поверхности, da – элемент поверхности S.

Для простоты мы выберем удобную для нас форму S в виде небольшого параллелепипеда (как показано на рис. 12) со сторонами Dx, Dy и Dz; точка P – центр параллелепипеда. Вычислим интеграл из уравнения (4) сначала по одной грани параллелепипеда. Для передней грани n = i (единичный вектор параллелен оси x); Da = DyDz. Вклад в интеграл от передней грани равен

На противоположной грани n= –i;эта грань дает вклад в интеграл

Используя теорему Тейлора, получим общий вклад от двух граней

Заметим, что DxDyDz = DV. Аналогичным образом можно вычислить вклад от двух других пар граней. Полный интеграл равен

и если мы положим DV 0, то члены более высокого порядка исчезнут. По формуле (2) выражение в скобках – это divU, что доказывает равенство (4).

Равенство (5) можно доказать таким же образом. Воспользуемся снова рис. 12; тогда вклад от передней грани в интеграл будет равен

и, используя теорему Тейлора, получим, что суммарный вклад в интеграл от двух граней имеет вид

т.е. это два члена из выражения для rotU в уравнении (3). Другие четыре члена получатся после учета вкладов от других четырех граней.

Что, в сущности, означают эти соотношения? Рассмотрим равенство (4). Предположим, что U – скорость (жидкости, например). Тогда nЧU da = Un da, где Unявляется нормальной компонентой вектора U к поверхности. Поэтому, Un da – это объем жидкости, протекающей через da в единицу времени, а – это объем жидкости, вытекающей через S в единицу времени. Следовательно,

– скорость расширения единицы объема вокруг точки P. Отсюда дивергенция получила свое название; она показывает скорость, с которой жидкость расширяется из (т.е. расходится от) P.

Чтобы объяснить физическое значение ротора U, рассмотрим другой поверхностный интеграл по маленькому цилиндрическому объему высотой h, окружающему точку P; плоско-параллельные поверхности могут быть ориентированы в любом направлении, которое мы выбираем. Пусть k –единичный вектор перпендикулярный к каждой поверхности, и пусть площадь каждой поверхности DA; тогда полный объем DV = hDA (рис. 13). Рассмотрим теперь интеграл

Подынтегральное выражение – уже упоминавшееся ранее тройное скалярное произведение. Это произведение будет равно нулю на плоских поверхностях, где k и n параллельны. На кривой поверхности

где ds – элемент кривой как показано на рис. 13. Сравнивая эти равенства с соотношением (5), получаем, что

Мы по-прежнему предполагаем, что U – скорость. Чему в таком случае будет равна средняя угловая скорость жидкости вокруг k? Очевидно, что

если DA 0. Это выражение максимально, когда k и rotU указывают в одном и том же направлении; это означает, что rotU – вектор, равный удвоенной угловой скорости жидкости в точке P. Если жидкость вращается относительно P, то rotU 0, и векторы U будут вращаться вокруг P. Отсюда и возникло название ротора.

Оцените статью:
Оставить комментарий