Гост 29322-2014

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

5 Маркировка и руководство по эксплуатации

5.1 Маркировка

8 дополнение к маркировке, указанной в ГОСТ Р 54127-1. на измерительной аппаратуре должна быть приведена следующая информация:

5.1.1 Значение установленного отключающего дифференциального тока или значения установленных отключающих дифференциальных токов УЗО-Д. на которые была рассчитана измерительная аппаратура.

5.2 Руководство по эксплуатации

Руководство по эксплуатации должно содержать следующую информацию в дополнение к указанной в ГОСТ Р 54127-1:

5.2.1 Предупреждение о том. что измерительная цепь не имеет зонда и возможное напряжение между защитным проводником и землей может влиять на результаты измерений.

5.2.2 Если в измерительной цепи в качестве зонда используется N-npoводник, должно быть предупреждение о том. что перед началом испытания необходимо проверить соединение между нейтральной точкой распределительной сети и землей и что возможное напряжение между N-проводни-ком и землей может влиять на результаты измерений.

5.2.3 Предупреждение о том. что токи утечки в цели, следующей за УЗО-Д. могут влиять на результаты измерений.

5.2.4 Если аварийное напряжение индицируется испытательной аппаратурой, должно быть однозначно указано, соотносится ли это напряжение с установленным дифференциальным током или с отключающим дифференциальным током УЗО-Д. При необходимости должно быть также приведено соответствующее указание в целях выполнения условия 4.2.1.

5.2.5 Указание о том. что сопротивление заземляющего электрода измерительной цели с зондом не должно превышать значения, установленного изготовителем.

5.2.6 Предупреждение о том. что возможно появление полей от других заземляющих устройств, которые могут повлиять на результаты измерений.

5.2.7 Предупреждение о том, что должны учитываться особые условия для УЗО-Д специальной конструкции, например типа S (селективных и защищающих от импульсных токов).

5.2.8 Предупреждение о том. что аппаратура, подключенная за УЗО-Д. может значительно увеличить время его срабатывания. Примерами такой аппаратуры могут быть подключенные конденсаторы или работающие двигатели.

Что делать, чтобы понизить напряжение у себя дома

Если по каким-то причинам коллективное обращение в организацию затруднено, или поставщик электроэнергии игнорирует заявления, не предоставляя качественную энергию, вы можете понизить напряжение в своей квартире или для конкретного прибора.

Для этого нужен стабилизатор сетевого напряжения, самый дешевый вариант – это стабилизатор релейного типа. С его помощью электропитание в частном доме вернется к номинальным параметрам. Подробнее мы рассматривали этот вопрос в статье: https://samelectrik.ru/kak-ponizit-postoyannoe-i-peremennoe-napryazhenie.html.

А при возможности подключения к трём фазам – установите переключатель фаз, например, ПЭФ-301. Он автоматически выберет линию с лучшими параметрами. Или реле напряжения типа РН-111 для защиты самых дорогих потребителей. Если его номинального тока будет недостаточно – подключите нагрузку через контактор.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, какие причины возникновения высокого напряжения в доме либо квартире, а также как можно защитить технику от негативного влияния этого явления. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Перенапряжение в сети
  • Как выбрать стабилизатор для дома
  • Основные неисправности электропроводки

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение

Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер

Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

Что делать, чтобы понизить напряжение у себя дома

Если по каким-то причинам коллективное обращение в организацию затруднено, или поставщик электроэнергии игнорирует заявления, не предоставляя качественную энергию, вы можете понизить напряжение в своей квартире или для конкретного прибора.

Для этого нужен стабилизатор сетевого напряжения, самый дешевый вариант – это стабилизатор релейного типа. С его помощью электропитание в частном доме вернется к номинальным параметрам. Подробнее мы рассматривали этот вопрос в статье: https://samelectrik.ru/kak-ponizit-postoyannoe-i-peremennoe-napryazhenie.html.

А при возможности подключения к трём фазам – установите переключатель фаз, например, ПЭФ-301. Он автоматически выберет линию с лучшими параметрами. Или реле напряжения типа РН-111 для защиты самых дорогих потребителей. Если его номинального тока будет недостаточно – подключите нагрузку через контактор.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, какие причины возникновения высокого напряжения в доме либо квартире, а также как можно защитить технику от негативного влияния этого явления. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Перенапряжение в сети
  • Как выбрать стабилизатор для дома
  • Основные неисправности электропроводки

8) Включение промышленного оборудования в смежной сети электропередач

Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N9 184-ФЗ «О техническом регулировании)»

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «НИИ Электромера» на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом ло стандартизации ТК 233 «Измерительная аппаратура для электрических и электромагнитных величин»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 10 июля 2012 г. Ne 156-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 61557-6:2007 «Электробеэопасмость в низковольтных распределительных сетях напряжением до 1000 В переменного тока и 1500 В постоянного тока. Аппаратура для испытания, измерения или контроля средств защиты. Часть 6. Эффективность устройств дифференциального тока (УДТ) в ТТ. TN и IT системах» (IEC 61557-6:2007 «Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. Equipment for testing, measuring or monitoring of protective measures — Part 6: Effectiveness of residual current devices (RCD) in TT. TN and IT systems»}.

В настоящем стандарте отдельные терминологические статьи изменены по отношению к тексту примененного международного стандарта. Внесение указанных технических отклонений направлено на учет требований рекомендаций по метрологии РМГ 29—99 «Государственная система обеспечения единства измерений. Метрология. Основные термины и определения». Текст измененных терминологических статей выделен в стандарте курсивом с подчеркиванием сплошной горизонтальной линией.

Ссылки на международные стандарты заменены выделенными курсивом ссылками на соответствующие им национальные стандарты.

Элемент «Библиография»:

— дополнен ссылкой на примененный стандарт МЭК на указанную продукцию:

— из него исключены стандарты МЭК. которые являются ссылочными стандартами (включены в раздел «Нормативные ссылки»), и стандарт МЭК 60359:2001. на который нет ссылки е стандарте МЭК.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (пункт 3.5)

5 ВЗАМЕН ГОСТ Р МЭК 61557-6—2009

6 8 настоящем стандарте часть его содержания может быть объектом латентных прав

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стан• дарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и пюксты размещаются также в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет (gost.ru)

Стандартинформ, 2013

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 54127-6—2012

Причины возникновения

Повышенное напряжение в сети может возникнуть по ряду причин, как аварийных, так и технологических, обусловленных особенностями ваших электросетей. Рассмотрим несколько ситуаций подробнее:

  1. Колебания, вызванные разницей потребления в сети днём и ночью. Напряжение повышается ближе к полуночи, когда все жильцы спят, а близлежащие крупные потребители энергии не работают. Днём же напряжение может быть в норме или даже пониженным.
  2. Зимой сеть в норме, а летом вольт в розетке больше нормы. Также связано с разницей в потребляемой мощности. Зимой включают обогреватели, в связи с этим нагрузка возрастает, увеличиваются и просадки на линии.
  3. Отгорание нуля и перекос фаз. Когда неисправен нулевой провод, например, на вводе в дом проблемы с контактом или ноль вовсе отгорел, то напряжение в квартирах, подключенных к одной фазе, будет высоким – до и больше 300 вольт, в зависимости от того, насколько несимметрична нагрузка. Зато в квартирах, подключенных к другим фазам, будет пониженное напряжение. Аналогичная ситуация возникает и при проблемах с нулем во внешних линиях электропередач, тогда проблема будет не только в квартирах, но и целые улицы с частными домами могут пострадать.

Первых две проблемы обусловлены устройством трансформаторной подстанции, они обустраиваются РПН (устройство регулирования под нагрузкой), вольтодобавочными трансформаторами или другими техническими решениями. Таким образом напряжение настраивают для корректного электроснабжения.

Но допустим, что есть длинная улица в поселке из частных домов. Тогда подстанция обустраивается так, чтобы обеспечить нормальное питание отдалённых потребителей, тогда у тех потребителей, что расположены ближе к ТП будет высокое напряжение, а в последних домах нормальное или низкое. Особенно остро это проявляется в то время, когда линия сильно нагружена.

Периодический переменный ток

Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.


Период и амплитуда синусоидального колебания

Частота вращения: формула

Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.

Её можно вычислить по формуле частоты переменного тока:

f = 1/T,

где:

  • f – частота, Гц;
  • T – период, с.

Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).

Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1

К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.

Стандарты частоты

Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:

  • 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
  • 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.

В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.

К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.

7) Плохое качество монтажа и материалов электрической домовой разводки

Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.

Чем опасно высокое напряжение

Мы разобрались, почему возникает повышенное напряжение в электрической сети, но какова его опасность? Это явление в сети опасно в первую очередь для бытовой техники. Хоть и в современных приборах устанавливают импульсные источники питания со стабилизированными выходными цепями, но входные их каскады испытывают повышенные нагрузки и могут преждевременно выйти из строя.

Также влиянию подвержены и нагревательные приборы – котлы, электроплиты, ТЭНы стиральных машин и прочее. Вследствие высокого напряжения через их спирали протекает повышенный ток. Соответственно выделяется большая мощность и срок службы снижается. Особенно опасно это для воздушных ТЭНов, например, нитей конвекторов и спиралей.

Такая неполадка электрической сети неблагоприятна и для техники с двигателями, к таким изделиям относятся компрессора холодильников, кондиционеров, вентиляторы и насосы. Их обмотки будут греться и в итоге могут выйти из строя. Это же применимо и к сетевым трансформаторам.

Не забывайте и о том, что раз из-за высокого напряжения увеличивается и потребляемый ток, то и проводка нагружается. В лучшем случае последствия приведут к повреждению контактных соединений (особенно если есть скрутки), а в худшем к отгоранию проводов, расплавлению изоляции и пожару.

4) Обрыв «нуля»

Это самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках квартиры или загородного дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке. При этом, если контакт не постоянный, то появляется, то пропадает — возникают очень сильные скачки.

Перенапряжение в многоквартирных домах

В последнее время перенапряжение в многоквартирных домах, построенных до начала 90-х годов, стало настоящим бедствием. Когда эти дома строились, в проектную нагрузку не вносились микроволновые печи, холодильники (два), компьютеры, домашние солярии и т.д.

Но, тем не менее, потребители пользуются этими благами цивилизации. Что в итоге происходит? В электроэнергетике есть понятие, вечерние и утренние максимумы нагрузки. Именно в это время люди идут на работу, готовят, включают много электроприборов в общем.

отгорание нулевого проводника

Если в нормальном режиме напряжение между фазным и нулевым проводником 230 В, то в данном случае нулевой проводник отсутствует и напряжение будет между фазами, т.е. 380 В. В итоге напряжение «гуляет» по стояку. Его величина зависит от включенной в сеть нагрузки и может быть в диапазоне 140 – 380 В от места отгорания нулевого проводника.

Оцените статью:
Оставить комментарий