Закон полного тока

В радиоэлектронике применяется ряд законов и постулатов для анализа, как цепей, так и устройств. Сталкиваясь с необходимостью исследования магнитных цепей, применяют закон полного тока для магнитного поля.

Магнитные потоки трансформатора

Магнитные потоки трансформатора

Суть закона полного тока

Данный постулат характеризует взаимосвязь между током электрической цепи и магнитным полем, появляющимся в связи с протеканием этого тока.

Контур с проводниками под током

Контур с проводниками под током

Для понимания закона полного тока необходимо представить некоторое число проводников, по которым протекает электрический ток. Множество проводников охватывает некоторый контур, и, соответственно, ограничивает мнимую поверхность S, согласно картинке выше. Направление огибания контура, согласно правилу буравчика, ориентировано по ходу часовой стрелки. Поскольку множество токов является величиной дискретной, то закон полного тока определяется как связь суммарного электрического тока через закольцованный контур L и напряженности магнитного поля, сформированного этим током, и определяется по формуле:

∫LHdl=I∑, где:

  • H – вектор напряженности магнитного поля;
  • dl – направленный элементарный линейный участок, взятый вдоль контура;
  • I∑ – суммарная сила тока.

Сущностью закона полного тока является то, что передвижение вектора напряженности магнитного поля по кольцевому контуру приравнивается сумме всех токов, которые находятся в этом контуре. Это выражение является интегральной формой закона полного тока.

Дополнительная информация. Интеграл произведения вектора напряженности магнитного поля и направленного элементарного линейного участка по кольцевому контуру называется циркуляцией вектора Н.

Если заданный контур пронизывает непрерывный пространственный поток движущихся заряженных частиц с плотностью электрического тока J, то общая величина тока, проходящего сквозь площадку, измеряется по выражению:

I∑=∫sJdS, где dS – элементарная площадка контура S.

Произведение JdS характеризует поток вектора плотности тока J, проходящего через поверхность dS.

Помимо интегральной формы, применяется дифференциальная форма закона полного тока. С целью получения дифференциальной формы выражения полного тока следует заменить интеграл по контуру L на интеграл по площади S. Поскольку теорема Стокса в векторном анализе выражается как:

∫LАdl=∫s rotАdS, то ∫LНdl=∫s rotНdS.

Объединив эти выражения с законом полного тока, в интегральной форме получается:

∫s rotНdS =∫s J∑dS.

Поскольку контур L взят произвольным образом, то интегралы в левой и правой частях выражения равны, если равны подынтегральные выражения. Исходя из этого, выражение преобразовывается в:

rotН=J∑.

Данной формулой выражается закон полного тока в дифференциальной форме.

Практическое применение в расчетах

Закон полного тока является основным законом при расчете магнитных цепей и дает возможность без особых усилий определять напряженность поля.

Примеры магнитных цепей

Примеры магнитных цепей

Магнитная цепь являет собой комплекс физических тел, обладающих сильно выраженными магнитными свойствами, магнитодвижущих сил и других условий, по которым смыкается магнитный поток. Магнитодвижущая сила определяется как произведение количества витков катушки на протекающий в ней электрический ток:

F=Iω, где:

  • F – магнитодвижущая сила;
  • ω – количество витков в катушке;
  • I – электрический ток.

Подобно тому, как электродвижущая сила электрической цепи провоцирует возникновение тока, так и магнитодвижущая сила магнитной цепи вызывает магнитный поток. Направление магнитодвижущей силы в схемотехнике определяется на основании правила буравчика.

Параметры, описывающие характеристики магнитной или электрической цепи, являются тождественными. Аналогичными являются и мероприятия по расчету цепей. Постоянные токи в электрических цепях возникают благодаря электродвижущей силе. В магнитных цепях эту функцию выполняет магнитодвижущая сила обмоток. Характеристика сопротивления току в электрической цепи имеет свою аналогию в магнитной цепи в виде магнитного сопротивления.

Неразветвленная магнитная цепь

Неразветвленная магнитная цепь

Согласно закону полного тока, выражение, описывающее процессы в магнитной цепи (рис. выше), выглядит так:

Iω=H1L1+H2L2, где:

  • H1 – напряженность поля первого участка;
  • H2 – напряженность поля второго участка;
  • L1 – длина первого однородного участка;
  • L2 – длина второго однородного участка.

Поскольку напряженность магнитного поля и магнитная индукции на первом и втором участках равны:

  1. H1=B1/µа1, где:
  • B1 – магнитная индукция;
  • µа1 – магнитная проницаемость первого участка.
  1. B 1=Φ/S1, где:
  • Φ – магнитный поток;
  • S1 – площадь поперечного сечения первого участка.
  1. H2=B2/µа2, где:
  • B2 – магнитная индукция второго участка;
  • µа2 – магнитная проницаемость второго участка.
  1. B 2=Φ/S2, где:
  • Φ – магнитный поток;
  • S2 – площадь поперечного сечения второго участка.

выражение, описывающее закон полного тока, преобразовывается в:

Iω=ΦL1/µа1S1+ ΦL2/µа2S2=ΦRм1+ΦRм2, где:

  • Rм1=L1/µа1S1 – магнитное сопротивление первого участка;
  • Rм2=L2/µа2S2 – магнитное сопротивление второго участка.

Проводя аналогии с электрической цепью, произведение магнитного потока на магнитное сопротивление является магнитным напряжением:

Uм2=ΦRм2=H2L2.

Если выделить из формулы магнитный поток, получается формула, представляющая собой закон Ома для магнитной цепи:

Φ= Iω/Rм1+Rм2= Iω/∑Rм.

Для магнитной цепи, не имеющей магнитодвижущей силы, выражение будет выглядеть как:

Uм=ΦRм=HL.

Аналогично электрическим цепям на магнитные цепи распространяются постулаты Кирхгофа:

  1. Сумма магнитных потоков, втекающих в узел, равна сумме магнитных потоков, вытекающих из узла. Выражение выглядит как ∑Φк=0;
  2. Сумма магнитодвижущих сил, находящихся в контуре, равна сумме падений напряжений на всех отрезках цепи, что соответствует выражению ∑Iω=∑Uм=∑HL.

Закон полного тока для магнитных цепей стоит на одном уровне с основными законами, касающимися электрических цепей. Понимание закона полного тока позволит с легкостью проводить расчет и подбор необходимых устройств, в основе работы которых лежат магнитные потоки.

Видео

Оцените статью:
Оставить комментарий