Компенсация реактивной мощности

Реактивная мощность в электросети возникает в результате использования нагрузки с элементами, составляющими индуктивность и емкость. Это могут быть обмотки электродвигателей, дросселей, трансформаторов, конденсаторы схем электротехнического оборудования. Индуктивная и емкостная нагрузка способствует сдвигу фазы  тока  относительно фазы напряжения энергии, передаваемой от электростанций.

Структура электросети с элементами, где возникает реактивная составляющая в нагрузке

Структура электросети с элементами, где возникает реактивная составляющая в нагрузке

Это явление приводит к генерации нагрузкой части энергии, ток которой направлен в противоположную сторону, в результате этого появляются потери энергии. Протекающий в цепи ток не совершает полезной работы, а расходуется на нагрев элементов сети.

Цели мероприятий по компенсации

При эксплуатации электросетей на бытовом и промышленном уровне большое значение имеет снизить расходы на электроэнергию. Особенно эта проблема актуальна на крупных промышленных предприятиях. Для экономии электроэнергии надо, чтобы электроустановки работали с максимальной эффективностью.

Реактивная энергия оказывает ряд негативных последствий:

  • Ухудшение работы электронных приборов в различных режимах по причине падения напряжения;
  • Падает статическая устойчивость элементов в нагрузке;
  • Приходится принимать меры, требующие затрат для увеличения пропускной способности сети;
  • Необходимо повышать мощность генераторов на электростанции.

Цель компенсации заключается в том, чтобы создать такие режимы работы, когда реактивная мощность будет оптимальна на конкретной нагрузке.

Физические принципы компенсации реактивной мощности

Векторная диаграмма показывает компенсацию реактивной мощности при изменении токовой нагрузки

Векторная диаграмма показывает компенсацию реактивной мощности при изменении токовой нагрузки

На схеме показана нагрузка, которая имеет активную составляющую Rн и индуктивную Lн, сопротивление в Омах, как пример это может быть электродвигатель с обмоткой на роторе. Чем больше величина индуктивного сопротивления в нагрузке Lн, тем больше угол отставания фазы соsφ полного тока I от фазы напряжения питания U.

С правой стороны показана векторная диаграмма, из которой видно, как уменьшается ток нагрузки после подключения конденсатора с емкостным сопротивлением Сн.

Полный ток нагрузки – это сумма токов реактивной составляющей и активной:

I = Iа + Iр.

Значения угла смещения фаз тока и напряжения выражается отношением величин Lн и Rн. Угол сдвига фаз может выражаться тремя способами:

Формула для вычисления угла сдвига фаз через sin

Формула для вычисления угла сдвига фаз через sin

Формула для вычисления угла сдвига фаз через cos

Формула для вычисления угла сдвига фаз через cos

Формула для вычисления угла сдвига фаз через tg

Формула для вычисления угла сдвига фаз через tg

Зная все эти величины и отношения их зависимости, можно расчитать реактивную и активную составляющие мощности, полную мощность цепи и полную мощность, потребляемую нагрузкой:

  • Активная мощность выражается как: Р = U x I cosф кВт;
  • Реактивная сотавляющая мощность: Q = U x I sinф кВАр;
  • Полная мощность, потребляемая нагрузкой: S = √P2+Q2 kBA.

При включении в цепь параллельно нагрузке конденсатора, который имеет емкостное сопротивление Сн и ток Ic противоположного направления к Ip, так как его фаза опережает фазу напряжения U на 90 ̊, реактивная мощность, потребляемая Lн индуктивным сопротивлением, компенсируется.

Наглядное отображение как происходит компенсация в электросетях

Наглядное отображение как происходит компенсация в электросетях

Реактивная составляющая тока с учетом компенсации выражается алгебраической формулой:    

I pk = Iph – Ic.

Когда ток отстает по фазе от напряжения, реактивная мощность потребляется и имеет индуктивный характер, обозначается как положительная знаком «+».

Когда ток опережает по фазе напряжение, реактивная мощность начинает генерироваться, имеет емкостной характер и обозначается знаком «-».

Виды устройств компенсации и места их установки

На промышленных объектах к сетям напряжением менее 1кВ подключается много оборудования, которое потребляет реактивную мощность, коэфициент соsф активной мощности обычно находится в интервале 0.4-0.9.

Трансформаторные подстанции, понижающие напряжение до 04 кВт, расположены на больших растояниях от нагрузки, что приводит к потере передаваемых мощностей. Поэтому приходится прокладывать кабельные линии с проводами большого сечения, наращивать мощность трансформаторов. Мощные понижающие напряжение трансформаторные подстанции стоят дорого. Поэтому компенсация реактивной мощности в электрических сетях производится в местах ее потребления, на низкой стороне трансформаторной подстанции.

Зависимость активных потерь от соsφ

Зависимость активных потерь от соsφ

Исследования итальянской компании LOVATO ELECTRIC показывают зависимость активных потерь от значения коэфициента соsφ в элементах сети. При значении 0.7 величина реактивной мощности начинает резко увеличиваться. Пэтому необходимо устанавливать компенсатор реактивной мощности, он оказывает прямое влияние на изменение баланса реактивной мощности в СЭС.

Фазометр для измерения соsφ

Фазометр для измерения соsφ

Используя фазометр, можно определить заначение соsφ возле каждого элемента нагрузки в сети и принять решение о необходимости компенсации на конкретном участке сети. Обычно измерения делаются на низкой стороне понижающей подстанции, и там же в отдельном отсеке устанавливают конденсаторы, компенсирующие реактивную мощность. Выбирая средства для компенсации реактивной мощности на промышленных объектах, обязательно учитываются характер нагрузки оборудования и режим работы производства.

В зависимости от этих факторов сети делятся на две категории:

  • Общего назначения со стабильным режимом эксплуатации, частотой напряжения 50 Герц;
  • Специфические сети – с несимметричными и нелинейными резкими изменениями величины и характера токовой нагрузки. К таким объектам можно отнести предприятия, где используется большое количество сварочных аппаратов, электролизные процессы, дуговые печи для плавки металлов, а также любое оборудование, потребляющее большое количество мощности и имеющее индуктивные элементы.
Схема размещения компенсирующих емкостных установок

Схема размещения компенсирующих емкостных установок

Элементы для компенсации устанавливаются не только на низкой стороне, но и перед электрооборудованием потребителя.

Распределение устройств копенсации по уровням СЭС

Распределение устройств копенсации по уровням СЭС

Производители и поставщики электроэнергии тоже заинтересованы в снижении потерь, поэтому, начиная с электростанции, на всех уровнях ставят установки для компенсации реактивной мощности.

Средства компенсации и объекты, на которых они размещаются

Средства компенсации и объекты, на которых они размещаются

На промышленных предприятих для погашения больших величин реактивной мощности ипользуются разные устройства компенсации:

  • Синхронные генераторы;
  • Асинхронные генераторы;
  • Шунтирующие реакторы;
  • Батареи статических конденсаторов.

Современные установки компенсации реактивной мощности имеют конструкции с ручной или автоматической регулировкой. Нерегулируемые компенсирующие приборы обычно размещают в распределительных щитах цеха или отдельного участка на производстве. Регулируемые КУ ставят чаще всего на трансформаторных подстанциях. Подключение осуществляется к фазным шинопроводам гибкими многожильными проводами соответствующего сечения.

Пример установки батарей статических конденсаторов в РЩ

Пример установки батарей статических конденсаторов в РЩ

Самым распространенным средством компенсации на производственных объектах считаются батареи статических конденсаторов, их устанавливают на подстанциях и в РЩ, РУ или РШ.

Схема установки конденсаторов для компенсации реактивной мощности при эксплуатации бытовых электроприборов

Схема установки конденсаторов для компенсации реактивной мощности при эксплуатации бытовых электроприборов

На бытовом уровне достаточно 1-3 конденсаторов не большой емкости более 220В по напряжению.

Установка элементов по компенсации реактивной мощности является энергоэкономичной технологией, значительно снижает потери электроэнергии, эксплуатация электроустановок становится более эффективной.

Видео

Оцените статью:
Оставить комментарий