Что такое внутреннее сопротивление аккумулятора?

Содержание

Введение

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

  • Автомобильный свинцово-кислотный аккумулятор с напряжением 12 вольт и ёмкостью 55 А·ч.
  • Батарея из 8 гальванических элементов, например, типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше — примерно 1 А·ч.

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток порядка 250 А), а от батареи элементов стартер вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартера упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 А).

В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятие внутреннее сопротивление.

Измерение внутреннего сопротивления автомобильного АКБ

Особенное влияние оказывает величина импеданса на автомобильные аккумуляторы. Если эксплуатация транспортного средства активная как в городе, так и на трассе, сельских дорогах, импеданс оказывает большое влияние на продолжительность службы батареи. Регулярное тестирование позволяет определить, когда пригодность АКБ для работы приближается к финишу.

Описание параметра

Сопротивление принято обозначать R. В автомобильном аккумуляторе это сумма сопротивлений омического и поляризации. В свою очередь, омическое R слагается из сопротивлений, которые возникают в электролите, на соединениях банок, на контактах, электродах, сепараторах.

Импеданс проявляется в отношении тока внутри батареи независимо от того, разрядный он или зарядный. Все элементы АКБ имеют свою проводимость, которая различается.

Связанные факторы

Конструкции аккумуляторов, применяемые материалы разные, поэтому показатели неодинаковые. Например, плюсовая решетка имеет R в 10 тыс. раз меньше, чем у нанесенного на нее свинца. На минусовой решетке разница неощутимая.

Технология изготовления электродов также различается, что сказывается на показателях. Сюда относятся: качество материала, контактов, конструкция, присутствие легирующих компонентов.

На R сепараторов влияют толщина и пористость материала. Сопротивление электролита зависит от его температуры, концентрации.

Измерение сопротивления

Точное измерение внутреннего сопротивления невозможно без использования графиков разрядных кривых. На него влияют заряженность АКБ, нагрузка, температура. Автолюбители пользуются более простым способом, позволяющим судить о состоянии источника питания.

Пользуются лампой из фары, например галогеновой на 60 Вт, и тестером. Светодиодную не следует применять ни в коем случае. Лампочку и мультиметр подключают к батарее последовательно. Записывают показания вольтметра. Отключают нагрузку и смотрят напряжение, которое окажется больше.

Сравнивают показания измерительного прибора. Проводят расчет: если разница не превышает 0,02 В, состояние АКБ хорошее – импеданс не больше 0,01 Ом.

Пользуются вольтметром с цифровой индикацией: на стрелочном трудно зафиксировать точные показатели.

Опыт автолюбителей

Отзывы водителей разные. Небольшая часть предпочитает проверять АКБ в мастерских. Другие, которые поняли процесс и значение этого параметра для жизнедеятельности аккумулятора, уделяют несколько минут для регулярной проверки.

При этом автолюбители советуют обратить внимание на такие моменты:

  1. Не следует слепо руководствоваться абсолютными показателями, взятыми из специальной литературы, интернета. Более полезно сравнивать старые показатели с новыми.
  2. Существуют нормы для каждой АКБ. Их берут из инструкции или оригинальной упаковки.
  3. Регулярное измерение импеданса позволяет отслеживать изменения в батарее. В одних случаях достаточно найти и устранить причину, в других – это сигнал о необходимости замены АКБ в ближайшем будущем.

Параметр важный. Если измерять его регулярно, это позволит избежать многих проблем. Так считают большинство автолюбителей независимо от того, проводят они измерения сами или обращаются к мастерам.

От чего зависит сопротивление

Доказано, что сопротивление возрастает с увеличением температуры

Но важно понимать, что есть такие сплавы, сопротивление которых не будет меняться или изменится незначительно с повышением температуры. Если же говорить об электролитах, то их сопротивление уменьшается с повышением температуры

Проводимость находится в зависимости от материалов проводника, а также от его длины и сечения: чем больше сечение, тем выше будет проводимость, но при этом проводимость снизится при увеличении длины проводника. Сопротивление и проводимость — обратные понятия.

Можно представить это явление как диаметр водопроводной трубы, тогда явно видно, что чем он больше, тем выше будет проводимость и ниже сопротивление:

Зависимость сопротивления от сечения и длины

Также оно будет проявляться в нагреве проводника при протекании в нем тока, при этом чем меньше сечение проводника и выше сила тока — тем сильнее будет нагрев.

Двухполюсник и его эквивалентная схема

Двухполюсник представляет собой электрическую цепь, содержащую две точки присоединения к другим цепям. Бывает два вида электрических цепей:

  • цепи, содержащие источник тока или напряжения;
  • двухполюсники, не являющиеся источниками.

Первые характеризуются электрическими параметрами: силой тока, напряжением и импедансом. Для расчёта параметров таких двухполюсников предварительно производят замену реальных элементов цепи на идеальные элементы. Комбинация, которая получается в результате подобной замены, называется эквивалентной схемой.

Внимание! При работе со сложными электрическими схемами с учётом того, что устройство работает на одной частоте, допустимо преобразовывать последовательные и параллельные ветви до получения простой схемы, доступной для расчёта параметров. Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления

Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления.

Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы:

изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование:

гальванический элемент, амперметр, вольтметр, резисторR1, переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. — силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

  1. Для записи результатов измерений подготовьте таблицу:
  2. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.

Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока — по горизонтальной. Проведите по точкам прямую линию.

Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;
  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно!

При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Закон Ома в комплексной форме

Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.

Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:

i = U/Z, i = UY

В данной формуле Z – комплексное сопротивление, Y – комплексная проводимость.

Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:

Z = ze = z cosф + jz sinф = r + jx

Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb

Нахождение внутреннего сопротивления[править]

Расчётправить

Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).

Пусть, имеется двухполюсник, который может быть описан приведенной выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

\( \begin{matrix}
U_{out1} = U — r I_1 \\
U_{out2} = U — r I_2
\end{matrix} \)
(1)

где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:

\( r = \frac {U_{out1} — U_{out2}} {I_2 — I_1}, \quad
U = U_{out1} + I_1 \frac {U_{out1} — U_{out2}} {I_2 — I_1} = U_{out1} + I_1 r \)
 

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (1) записывается следующим образом:

\( \begin{matrix}
U_{oc} = U — 0 \\
0 = U — r I_{sc}
\end{matrix} \)
 

где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

\( r = \frac {U_{oc}} {I_{sc}}, \quad
U = U_{oc} \)
(2)

Таким образом, чтобы расчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:

  • Расчитать выходное напряжение двухполюсника в режиме холостого хода
  • Расчитать выходной ток двухполюсника в режиме короткого замыкания
  • На основании полученных значений найти r и U по формуле (2).

Измерениеправить

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчета — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощенной формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Часто применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нем составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивлениеправить

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль, , только или часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Обработка и анализ результатов проверки аккумуляторов

К одному UPS подключены две аккумуляторные батареи, состоящие из одинаковых

герметичных свинцовых кислотных аккумуляторов. Не известно, введены ли они в эксплуатацию одновременно и из одной ли партии
эти аккумуляторы. Поэтому примем предложенное автором запроса разбиение
аккумуляторов на две батареи и будем анализировать их по-отдельности.

Поместим все полученные данные в электронную таблицу и проведем несложный статистический
анализ.

Минимальное и максимальное напряжение на аккумуляторе

Батарея 1 2
Umin, В 11,19 13,38
Umax, В 13,6 13,59

Сразу бросается в глаза большой разброс минимальных напряжений. Смотрим на исходные данные
и видим, что у одного из аккумуляторов батареи
1 напряжение понижено примерно на 2.2 В, по сравнению с другими
аккумуляторами. Из-за пониженного напряжения, Кулон не смог оценить емкость этого аккумулятора.
Напряжение на аккумуляторе 1-5 понижено примерно на величину напряжения
одного элемента. Можно предположить, что в имеется короткое замыкание одного из элементов — этот аккумулятор
следует заменить немедленно.

Среднее и медианное значение напряжения на аккумуляторе

Батарея 1 2
Uсред, В 13,42 13,52
Uмедиан, В 13,53 13,53

У нас есть большой выброс (аккумулятор 1-5), который сильно смещает величину среднего
напряжения. Обычно для данных с выбросами правильнее использовать медиану, а не среднее. Для расчета отклонений напряжения, так
сделаем и мы — примем за напряжение группы медианное значение напряжения.

Отклонения напряжения (аккумулятор 1-5 отброшен)

Батарея 1 2
Станд.откл. U (без выброса), В 0,04 0,04
Относит. ст. Откл. 0,32% 0,31%

Разбросы напряжения на аккумуляторах небольшие, это характерно для аккумуляторов из одной партии,
до окончания ресурса которых еще остается некоторое время (старение аккумуляторов еще не вступило в финальную стадию). О наиболее интересующей нас
величине —
емкости аккумуляторов, напряжение или разброс напряжений не говорит ничего.

Минимальная и максимальная емкость аккумуляторов, среднее и медианное значение емкости.

Батарея 1 2
Еmin, А*час 32 32
Emax, А*час 39,2 39,4
Eсред, А*час 36,28 37,08
Емедиан, А*час 37,6 38

Максимальная и минимальная
емкости аккумуляторов заметно различаются, поэтому отклонения мы будем мы рассчитывать относительно медианного значения.

Отклонения емкости аккумуляторов.

Батарея 1 2
Станд.откл. Е (без 1-5), А*час 2,64 1,93
Относит. ст. Откл. 7,03% 5,07%
Макс.отклонение Е, А*час 5,6 6
Относит.макс.отклон.Е 14,9% 15,8%

Стандартное отклонение
емкости аккумуляторов 5-7% — это неплохо. Но максимальные отклонения
емкости — великоваты для 10-летних аккумуляторов, простоявших в буфере всего 2 года.
Похоже, что эти аккумуляторные батареи испытали на себе какое-то вредное
воздействие (неправильные режимы зарядки или, скорее всего,
повышенную температуру). Но сейчас, по утверждениям автора запроса, с температурой и режимами все нормально.

Сами по себе 15% отклонения
емкости от медианы не являются причиной выводить аккумуляторы из эксплуатации. Поэтому можно считать
состояние аккумуляторных батарей 1 и 2 (за исключением аккумулятора
1-5) удовлетворительным.

Как проверить внутреннее сопротивление АКБ

Существуют определённые методики, с помощью которых удастся самостоятельно проконтролировать состояние батареи в автомобиле. Так как измерить текущее внутреннее сопротивление используемого аккумулятора вряд ли получится, то в большинстве случаев специалисты применяют косвенные методы.

Замеры стоит проводить регулярно, чтобы иметь полную картину о состоянии электроприбора. Опытным путём доказано, что ежегодно R в банках в среднем возрастает на 5%. Если же измеритель показывает отклонение на 8% за этот период, то снижение работоспособности кроется в более жёстких условиях эксплуатации либо в чрезмерной нагрузке от потребителей.

Одним из вариантов мониторинга является подача переменного тока. Он занимает около двух часов. Кроме цифрового вольтметра и ограничительного трансформатора, потребуются конденсатор и постоянный резистор. При кажущейся простоте схемы точность результатов будет невысокой, так как на процесс оказывают влияние включенные реактивные и активные параметры, а также химические взаимодействия внутри корпуса.

На практике специалисты пользуются чаще методом постоянной нагрузки. Он заключается в том, что батарею на протяжении нескольких секунд оставляют нагруженной. Рассчитать искомое значение помогают предварительные и последующие замеры напряжения вольтметром по классической формуле закона Ома. Однако подобный метод не подойдёт для старых батарей.

В последнее время набирает популярность короткоимпульсный способ. Его позитивными сторонами являются такие факторы:

  • в качестве измерителя используется только вольтметр;
  • батарею не требуется снимать или отключать от бортовой сети;
  • процесс краткосрочный и не сказывается на дальнейшей работе оборудования.

Автомобилисты-любители могут самостоятельно собрать тестер для замера внутреннего сопротивления, но чаще пользуются помощью промышленных аппаратов. Помогают как нагрузочные вилки, так и аппараты, устанавливающие связь между состоянием АКБ и импедансом. Более дорогой вариант – применение измерителя спектров, помогающего определить проводимость.

Внутреннее сопротивление аккумулятора 18650

Аккумулятор форм фактор 18650 представляет цилиндр, в котором спиралью свернуты банки, состоящие из пар лент с разными полюсами, разделенные сепараторами. Внутренняя начинка может быть никель-кадмиевой, металлогидридной или литий-ионной. В зависимости от активной пары аккумуляторы имеют разную емкость и разность потенциалов на клеммах.

Какое должно быть внутреннее сопротивление в аккумуляторах 18650 литий-ионного типа? Меняется ли сопротивление с потерей емкости. Все это можно определить, составив схему для измерения.

Ra – активное сопротивление 18650

Cдв – емкость двойного электрического слоя

R0 – сопротивление переноса заряда на границе электролит-электрон

Zw – диффузионный импеданс Варбурга

При этом измерение производится током в 1000 Гц, согласно международным стандартам. Связано это с устройством аккумулятора, который является одновременно конденсатором и резистором. Стандартное внутреннее сопротивление новых литиевых аккумуляторов 18650 около 100мОм. Это норма. Со временем аккумулятор неизбежно теряет емкость, внутреннее сопротивление возрастает.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

ε = E/Q, где:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример.

Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно!

Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Примечания

  1. Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
  2. Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
  3. Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
  4. Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
  5. Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
  6. То же самое, что и напряжение
  7. . Дата обращения 6 апреля 2014.
  8. Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
  9. Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
  10. В рабочем диапазоне частот
Оцените статью:
Оставить комментарий