Как узнать ампераж

Применение правила буравчика


Данное правило гласит: если при движении вперед этого устройства траектория движения тока в проводнике совпадает с ним, то траектория вращения основания прибора комплементарна траектории движения магнитного контура. Чтобы определить траекторию вращения магнитного контура на представленном графическом изображении нужно знать несколько особенностей.

Часто в задачах по физике нужно, наоборот, определить траекторию движения тока. Чтобы это сделать, дается направление вращения кругов магнитного поля. Ручка буравчика начинается вращаться в сторону, указанную в условиях. Если буравчик движется в поступательном направлении, значит, ток направлен в сторону движения, если же он направлен в обратную, то и ток движется соответственно.

Для определения траектории движения тока в случае, представленном на втором рисунке, тоже можно воспользоваться правилом штопора. Для этого необходимо вращать ручку буравчика в сторону, указанную на изображении контура магнитного поля. Если он будет двигаться поступательно, то ток будет двигаться в сторону от наблюдателя, если же, наоборот, только к наблюдателю.

Важно! Если указана траектория движения потока, то определить траекторию вращения линии магнитного контура можно по вращению ручки буравчика

Оно обозначается при помощи точки или крестика. Точка означает движение в сторону наблюдателя, крестик означает обратное. Легко запомнить этот случай, используя так называемое правило «стрелы», если острие «смотрит», а в лицо, то траектория движения тока в сторону наблюдателя, если же в лицо «смотрит хвост стрелы», то она двигается от наблюдателя.

Как правило буравчика, так и правило правой руки, достаточно легко применить на практике. Для этого нужно расположить кисть соответствующей руки таким образом, чтобы в лицевую сторону направлялся силовой контур магнитного поля, после чего большой палец, отведенный перпендикулярно, необходимо направить сторону движения тока, соответственно, остальные выпрямленные пальцы укажут на траекторию магнитного контура.

Различают исключительные случаи использования правила правой руки для вычисления:

  • уравнения Максвелла,
  • момента силы,
  • угловой скорости,
  • момента импульса,
  • магнитной индукции,
  • тока в проводе, движущегося через магнитное поле.

Физическая величина

Ампер – это единица, которая количественно характеризует силу тока. Ее значение может быть определено путем проведения непосредственных замеров при помощи мультиметра, тестера или амперметра (прямой способ). Сила тока измеряется только путем последовательного включения в электрическую цепь измерительного прибора. Во втором случае ее значение можно узнать путем проведения расчетов (косвенный способ). Если известно напряжение, приложенное к участку цепи, а также его сопротивление, то достаточно разделить первое на второе — и мы получим необходимое значение. На практике не так часто используются амперы – это большая величина. Поэтому приходится применять кратные единицы – микро (10-6) и милли (10-3). А вот для проведения электротехнических расчетов нужно переводить их в основные единицы измерения.(например, миллиамперы в амперы). Рассмотрим следующий пример. Напряжение на участке цепи U = 6 В, а его сопротивление R = 100 Ом. Определим силу тока I на нем по закону Ома:

I = U/R, (1)

где:

  • U – напряжение на участке цепи, В;
  • R – сопротивление этого же участка, Ом;
  • I – сила тока на нем, А.

В результате проведения расчетов получаем I = U/R = 6/100 = 0,06 А. Не совсем удобное число для восприятия. Поэтому его пересчитывают в кратные единицы измерения. В данном случае удобно представить это значение в миллиамперах. Для этого полученное значение 0,06 А умножаем на 1000 и получаем 60 мА. Можно сделать и обратный пересчет — миллиамперы в амперы. Для этого достаточно разделить 60 мА на 1000, и получим все те же 0,06 А. Из этого пересчета видно, сколько в ампере миллиампер — 1000. Поэтому делим или умножаем именно на это число. Если используется приставка «микро», то уже для перехода от одной единицы измерения к другой нужно умножать или делить на 1 000 000.

Направление силы Ампера

Чтобы определить направление этих сил используют правило левой руки. Для этого нужно раскрытую ладонь левой руки расположить около проводника так, чтобы в неё входили линии вектора индукции магнитного поля, а четыре раскрытых пальца указывали направление протекания тока. Тогда отогнутый под прямым углом большой палец укажет направление силы Ампера и Лоренца.

Напомним, что направление вектора магнитной индукции определяется с помощью правила правой руки. Для этого нужно обогнуть четыре пальца правой руки вокруг проводника, большой палец отогнуть под прямым углом (словно показываете «класс»), так чтобы он указывал направление тока. Тогда четыре согнутых пальца будут показывать, как проходят линии магнитного поля, они будут описывать окружности вокруг токопроводящей жилы.

Краткие о напряжении, токе и мощности

Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

P=I*U*cosФ

Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания

Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Два параллельных проводника

Два бесконечных параллельных проводника в вакууме

Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r{\displaystyle r} друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Требуется найти силу, действующую на единицу длины проводника.

В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током I1{\displaystyle I_{1}} в точке на расстоянии r{\displaystyle r} создаёт магнитное поле с индукцией

B1(r)=μ4π2I1r,{\displaystyle B_{1}(r)={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}}{r}},}

где μ{\displaystyle \mu _{0}} — магнитная постоянная.

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

dF→1−2=I2dl→×B→1(r).{\displaystyle d{\vec {F}}_{1-2}=I_{2}d{\vec {l}}\times {\vec {B}}_{1}(r).}

По правилу буравчика, dF→1−2{\displaystyle d{\vec {F}}_{1-2}} направлена в сторону первого проводника (аналогично и для dF→2−1{\displaystyle d{\vec {F}}_{2-1}}, а значит, проводники притягиваются).

Модуль данной силы (r{\displaystyle r} — расстояние между проводниками):

dF1−2=μ4π2I1I2rdl.{\displaystyle dF_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}dl.}

Интегрируем по участку проводника длины L{\displaystyle L} (пределы интегрирования по l{\displaystyle l} от 0 до L{\displaystyle L}):

F1−2=μ4π2I1I2r⋅L.{\displaystyle F_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}\cdot L.}

Если L{\displaystyle L} — единичная длина, то это выражение задаёт искомую силу взаимодействия.

Полученная формула используется в СИ для установления численного значения магнитной постоянной μ{\displaystyle \mu _{0}}. Действительно, ампер, являющийся одной из СИ, определяется в ней как «сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7ньютона».

Таким образом, из полученной формулы и определения ампера следует, что магнитная постоянная μ{\displaystyle \mu _{0}} равна 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Н/А² или, что то же самое, 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Гн/ м точно.

Как обозначаются амперы, миллиамперы и микроамперы

Правильные обозначения: ампер — А, миллиампер — мА, микроампер — мкА.

Эта физическая величина названа фамилией учёного, следовательно, её запись всегда будет содержать в русском обозначении букву А в верхнем регистре, в международном — латинскую букву A также в верхнем регистре.

Обратите внимание! Не стоит путать МА и мА, особенно при решении задач. В первом случае обозначен мегаампер (10^6 А), а во втором — миллиампер (10^-3 А), который в миллиард раз меньше мегаампера

Правописание дольных и кратных единиц, в их числе миллиампер и микроампер, будет выполняться в соответствии с правилами написания единиц и приставок, установленными ранее упомянутой Международной системой измерений (СИ).

  • Приставка пишется слитно с наименованием или обозначением единицы.
  • Недопустимо употребление двух или более приставок подряд (например, микромиллиампер).
  • В большинстве случаев принято выбирать приставку таким образом, чтобы стоящее перед ней число находилось в диапазоне от 0,1 до 1000.

Дополнительная информация! Приставка милли переводится с латинского (mille) как «тысяча». Приставка микро имеет древнегреческие корни (μικρός) и переводится как «малый».

Применение на практике

Закон Ампера является одним из важнейших законов электротехнике. Давайте рассмотрим примеры из его практического применения. Основой почти любого предприятия является электропривод. Двигателя и электромагнитные исполнительные механизмы используются для перемещения или приведения в действие различных узлов:

  • автоматизированных задвижек трубопроводов;
  • грузоподъемных механизмов;
  • электротранспорта (электровозы на жд);
  • трамваи;
  • троллейбусы;
  • электрокары и прочее.

Сила Ампера заставляет двигатель вращаться, из-за взаимодействия между обмотками ротора и статора. Для того чтобы обмотки вращались, их либо переключают с помощью щеточного узла и коллектора в двигателях постоянного тока, либо используют переменный ток.

В динамиках и громкоговорителях тоже закон Ампера нашел свое применение. Там происходит движение мембраны, на которой расположена обмотка из медной проволоки в магнитном поле постоянного магнита.

Её действие наблюдается при коротких замыканиях на ЛЭП. Где под воздействием сверхбольших токов шины и провода начинают изгибаться.

В момент выстрела из рельсотрона у него раздвигаются рельсы. Это обусловлено уже перечисленными причинами.

Напоследок рекомендуем просмотреть полезное видео по теме:

https://youtube.com/watch?v=ufLl9X5tgf0

Все явления в электричестве важны, некоторые вносят меньшее влияние, некоторые большее. Однако понимать, где и как они проявляются должен каждый, кто связан с этой сферой, независимо электромонтер, АСУшник или КИПовец. Надеемся, теперь вы знаете, что описывает закон Ампера, а также какое его практическое значение!

Материалы по теме:

  • Закон Джоуля-Ленца
  • Как перевести амперы в киловатты
  • Распределение зарядов в проводнике

/ fizika / Закон Ампера. Взаимодействие параллельных токов

Закон Ампера. Взаимодействие параллельных токов.

Закон Ампера — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельныепроводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией .

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

Сила Ампера — это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

· пропорционален длине проводника l, находящегося в магнитном поле;

· пропорционален модулю индукции магнитного поля B;

· пропорционален силу тока в проводнике I;

· зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля B⃗ .

Тогда: модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля ,

где — сила тока в проводнике;

Модуль вектора индукции магнитного поля;

Длина проводника, находящегося в магнитном поле;

Угол между вектором магнитного поля и направлением тока в проводнике.

Этой формулой можно пользоваться:

· если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;

· если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля () входил в ладонь, четыре вытянутых пальца указывали направление тока (), тогда отогнутый на 90° большой палец укажет направление силы Ампера ().

27) Закон Био-Сава-Лапласа и его применение

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Формулировка закона Био Савара Лапласа имеет вид: Определяет в точке А индукцию поля , создаваемую элементом проводника с током на расстоянии от него.

Где – вектор, по модулю равный длине элемента проводника и совпадающий по направлению с током; – радиус-вектор, проведенный из элемента проводника в точку А поля; – модуль радиуса-вектора ; – магнитная постоянная ; – Относительная магнитная проницаемость (среды); — Сила тока (текущего по проводнику), размерность в СИ-А

Направление вектора :

Вектор перпендикулярен и и напревлен по касательной к линии магнитной индукции. Направление определяется по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение винта соотвтествует напрвлению тока в элементе.

Применение закона: магнитное поле прямого тока

тока, текущего по тонкому прямому проводу бесконечной длины. В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины.

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера
. Ее обозначения:
. Сила Ампера векторная величина. Ее направление определяет
правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее.
Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на
большой палец укажет направление силы Ампера (рис.1).

Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера

Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ задачи:

Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.

Решение:

В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.

Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.

1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).

2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.

3) Приходим к выводу: проводник А привлекается к проводнику В.

Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).

2) Определим направление силы Ампера, действующая на проводник В.

3) Приходим к выводу: проводник В привлекается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.

Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?

Анализ задачи:

Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:

  1. сила Ампера будет направлена ​​противоположно силе тяжести (то есть вертикально вверх)
  2. значение силы Ампера равна значению силы тяжести FA =  Fтяж

Направление тока определим, воспользовавшись правилом левой руки.

Решение:

Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.

Учитываем, что FA =  Fтяж.  FA= BIlsinα, где sin α = 1; Fтяж = mg

Из последнего выражения найдем силу тока: I = mg/Bl

Проверим единицу, найдем значение искомой величины.

Ответ: I = 8 А; Ток в направлении от нас.

Подводим итоги

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

Определение

Закон Ампера гласит, что сила, которая возникает вокруг проводника, прямо пропорциональна его длине, силе тока и магнитной индукции, а также косинуса угла между проводником и вектором магнитной индукции. Соответственно его формула:

F=BILcosa

Эта F является силой Ампера. Ничего не напоминает? И формула, и сам её физический смысл аналогичен силе Лоренца. Отличием является лишь то, что закон Ампера справедлив для проводника в магнитном поле, а Лоренца действует на заряженные частицы.

Если его представить в векторной форме, то уравнение будет иметь вид:

А в дифференциальной форме:

Есть и другая формулировка: закон Ампера характеризует силу, действующую на проводник в магнитном поле. Он был открыт Андре Мари Ампером в 1820 году.

В чем измеряется сила Ампера? Как и другие силы в физике – в Ньютонах (Н).

Интересно! В отечественной физике в большинстве случаев придерживаются системы единиц измерения СИ. Так вот в этой системе под величиной 1 Ампер понимают такой ток, при протекании которого по двум проводникам расположенным параллельно и в 1 метре друг от друга, возникала бы сила взаимодействия в 2*10^(-7) Н. При этом они имеют бесконечную длину, минимальную площадь поперечного сечения и расположены в вакууме.

Так как этот закон подразумевает возникновение какой-то силы, то нет сомнений что при наличии нескольких таких сил они будут взаимодействовать между собой. Давайте разберёмся как именно.

При взаимодействии параллельных токов, протекающих в одном направлении, два расположенных рядом проводника начнут притягиваться. Если токи будут протекать в разных направлениях — проводники будут отталкиваться

Это и есть самое важное действие в этом законе

Для чего нужно уметь делать перевод электрических единиц

Очень часто, используя бытовую технику, хозяйка может увидеть маркировку на розетке «220В 6А» или другую похожую и не понять, что это может серьезно повредить электрическую сеть в доме, так как такая маркировка указывает на максимальную величину мощности нагрузки, которую можно подключить в розетку.

Ампер в ватт

Для того чтобы найти, сколько единиц мощности (ватт) можно подключить в имеющуюся розетку, достаточно умножить значения напряжения на величину тока. В нашем случае 220 умножаем на 6 = 1320 Вт — величина мощности, максимальная для данной розетки. Когда мы подключаем в нее бытовую технику, надо смотреть на ее мощность. Тепловой обогреватель (масляный радиатор) в нашем случае можем включать только при половинном значении его мощности.


Перевод амперов в ватты

Для выбора защиты для домашнего оборудования (автомат) надо уметь делать обратный перевод из величины мощности оборудования, включенного одновременно в сеть, в амперы. Для защиты бойлера мощностью 2,5 кВт (= 2500 ватт) в однофазной сети 220 вольт надо сделать следующее: мощность/напряжение = 11,36 А. Для защиты оборудования нам будет достаточно купить и установить автомат с разрывом цепи на 16 ампер.

Применение

Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера.
Принцип работы электромеханических машин (движение части обмотки ротора относительно части обмотки статора) основан на использовании закона Ампера, и самый широко распространённый и используемый чуть ли не во всех технических конструкциях агрегат — это электродвигатель, либо, что конструктивно почти то же самое — генератор. Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение.
Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др).

Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеют движущиеся узлы, основаны на эксплуатации закона Ампера.

Также, он находит применение во многих других видах электротехники, например, в динамическое головке (динамике): в динамике (громкоговорителе) для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит, на него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.

Также:

  • Электродинамическое сжатие плазмы; например, в токамаках, установках Z-пинч.
  • .

Как переводить миллиамперы в амперы и наоборот

При переводе значений из одной величины в другую следует уметь работать со степенями и стандартным видом числа в физике. Будет проще переводить, зная соответствие степеней и приставок. Рекомендуется освоить это.

Чтобы конвертировать миллиамперы в амперы, следует разделить имеющееся числовое значение на 1000 или умножить на 10^-3 при работе со стандартным видом. А для обратного перевода следует произвести либо умножение на 1000, либо умножить значение на 10^3.

Пример: Сколько ампер в 500 миллиамперах?

Миллиампер меньше ампера в 1000 раз, значит нужно разделить на 1000; 500/1000 = 0,5. Получается 0,5 А.

Конвертер

1 мкА= 10^-6 А = 0,0000001 А. Микроампер меньше ампера в миллион раз. Для перевода первой величины во вторую потребуется произвести деление на 1000000 или умножение на 10^-6 А.

Чтобы перевести микроамперы в миллиамперы, необходимо учитывать, что 1 мА = 1000 мкА. Для перевода величин будут использоваться те же действия, что и для миллиампер и ампер в первом алгоритме.

Электричество — обширнейшая тема в физике, для её усвоения необходимо понимание многих процессов и прежде всего — основной единицы, характеризующей её — ампера. А для правильного перевода величин необходимо знание приставок, принятых в СИ, и математики.

Оцените статью:
Оставить комментарий