Трехфазный ток
Содержание
Большинство генераторов переменного тока, а также линий, передающих электроэнергию, используют трехфазные системы. Передача тока осуществляется по трем линиям (или четырем) вместо двух. Трехфазный ток представляет собой систему переменного электротока, где значения токов и напряжений меняются по синусоидальному закону. Частота синусоидальных колебаний тока в России и Европе – 50 Гц.
Почему используют трехфазный ток
Транспортировка электроэнергии от электростанций до отдаленных точек предполагает использование очень длинных проводов и кабелей, имеющих большое сопротивление. Это означает, что часть энергии будет потеряна, рассеиваясь в виде тепла. Уменьшив токи, передаваемые по ЛЭП, можно значительно снизить потери.
Наиболее распространенной формой производства электроэнергии является трехфазная генерация. В промышленности трехфазный переменный ток часто применяется для работы электродвигателей.
Преимущества трехфазной системы:
- Возможность наличия фазного и линейного напряжений в трехфазных цепях двух разных значений: высокое – для мощных потребителей, низкое – для остальных;
- Сниженные потери при транспортировке энергии, следовательно, использование более дешевых проводов и кабелей;
- Трехфазные машины имеют более стабильный крутящий момент, чем однофазные (выше производительность);
- Лучшая производительность в трехфазных генераторах;
- В некоторых случаях постоянный ток должен получаться из переменного. При этом использование 3 фазного тока является существенным преимуществом, так как пульсация выпрямляемого напряжения значительно ниже.
Что такое трехфазный ток
Трехфазная система переменного тока – это три синусоидальных токовых сигнала, различия между которыми составляют треть цикла или 120 электрических градусов (полный цикл – 360°). Они проходят свои максимумы в регулярном порядке, называемом фазовой последовательностью. Синусоидальное напряжение пропорционально косинусу или синусу фазы.
Три фазы поставляются обычно по трем (или четырем) проводам, а фазные и линейные напряжения в трехфазных цепях представляют собой разности потенциалов между парами проводников. Фазные токи являются токовыми величинами в каждом проводнике.
Схемы трехфазных цепей
В схемной конфигурации «звезда» имеется три фазных провода. Если нулевые точки системы питания и приемника соединены, то получается четырехпроводная «звезда».
В схеме различаются межфазное напряжение, находящееся между проводниками фазы (его еще именуют линейным), и фазное – между отдельными проводниками фазы и N-проводником.
Что такое фазное напряжение, наиболее наглядно определяется с помощью построения векторов – это три симметричных вектора U(А), U(В) и U(С). Здесь же видно, что такое линейное напряжение:
- U(АВ) = U(А) – U(В);
- U(ВС) = U(В) – U(С);
- U(СА) = U(С) – U(А).
Следовательно, линейное напряжение для звездной схемы с равномерными нагрузками можно рассчитать так:
Uab = 2 x Ua x cos 30° = 2 x Ua x √3/2 = √3 x Ua.
Аналогично находятся другие показатели фазного напряжения.
Линейное и фазное напряжение, если суммировать векторные величины всех фаз, равны нулю:
- U(А) + U(В) + U(С) = 0;
- U(АВ) + U(ВС) + U(СА) = 0.
Если к «звезде» подсоединяется электроприемник с сопротивлением, идентичным в каждой фазе:
Za = Zb = Zc,
то можно произвести расчет линейного и фазного токов:
- Ia = Ua/Za;
- Ib = Ub/Zb;
- Ic = Uc/Zc.
Применительно для общих случаев «звездной» системы линейные токовые величины идентичны фазовым.
Обычно предполагается, что источник, питающий электроприемники, симметричен, и только импеданс определяет работу схемы.
Поскольку суммирующий токовый показатель соответствует нулю (закон Кирхгофа), то в случае четырехпроводной системы в нейтральном проводнике ток не течет. Система будет вести себя одинаково, независимо, существует нейтральный проводник или нет.
Для активной мощности трехфазного приемника справедлива формула:
P = √3 x Uф I x cos φ.
Реактивная мощность:
Q = √3 x Uф I x sin φ.
«Y» при асимметричной нагрузке
Это такая схемная конфигурация, где токовая величина одной фазы отличается от другой, либо различны фазовые сдвиги токов по сравнению с напряжениями. Межфазовые напряжения будут оставаться симметричными. По векторным построениям определяется появление сдвига нулевой точки от центра треугольника. Результатом является асимметрия фазных величин напряжений и появление Uo:
Uo = 1/3 (U(А) + U(В) + U(С)).
Несмотря на асимметричную нагрузку, суммирующий токовый показатель нулевой.
Иначе ведет себя схема, когда подключен N-проводник с незначительным полным сопротивлением Zo = 0. Нулевые точки ИП и электроприемника оказываются гальванически связанными и имеют одинаковый потенциал. Фазное напряжение разных фаз приобретает идентичное значение, а токовая величина в N-проводнике:
Io = I(А) + I(В) + I(С).
При передаче мощности принято использовать трехпроводные системы на уровнях высокого и среднего напряжения. На низком уровне напряжения, где трудно избежать несбалансированных нагрузок, применяются четырехпроводные системы.
Схема «Δ»
Подключая конец каждой фазы электроприемника к началу следующей, можно получить трехфазный ток с последовательно подсоединенными фазами. Полученная схемная конфигурация называется «треугольником». В таком виде она может работать только как трехпроводная.
С помощью векторных построений, понятных даже для чайников, иллюстрируются фазные и линейные напряжения и токи. Каждая фаза электроприемника оказывается подключенной на линейное напряжение между двумя проводниками. Линейное и фазное напряжение идентичны на приемнике электроэнергии.
Межфазовые токи для «треугольника» – I(А), I(В), I(С). Фазные – I(АВ), IВС), I(СА).
Линейные токи находятся из векторных построений:
- I(А) = I(АВ) – I(СА);
- I(В) = I(ВС) – I(АВ);
- I(С) = I(СА) – I(ВС).
Суммирующая токовая величина в симметричной системе соответствует нулю. Среднеквадратичные величины фазных токов:
I(АВ) = I(ВС) = I(СА) = U/Z.
Поскольку фазовый сдвиг между U и I равен 30°, линейный ток в данной конфигурации будет равен:
I(А) = I(АВ) – I(СА) = 2 x I(АВ) x cos 30° = 2 x Iф x √3/2 = √3 x Iф.
Трехфазный и однофазный ток
Схемная конфигурация «Y» дает возможность использовать два разных напряжения при питании потребителей бытовой и промышленной сети: 220 В и 380 В. 220 В получается с использованием двух проводников. Один из них –фазный, другой – N-проводник. Напряжение между ними соответствует фазному. Если взять 2 проводника, оба представляющие собой фазы, то напряжение между фазами носит название линейного и равно 380 В. Для подключения используются все 3 фазы.
Основные различия однофазной и трехфазной систем:
- Однофазный ток предполагает питание через один проводник, трехфазный – через три;
- Для завершения цепи однофазного питания требуется 2 проводника: еще один нейтральный, для трехфазного – 4 (плюс нейтральный);
- Наибольшая мощность передается по трем фазам, в отличие от однофазной системы;
- Однофазная сеть более простая;
- При неисправности фазного провода в однофазной сети питание полностью пропадает, в трехфазной – подается по двум оставшимся фазам.
Сегодня почти все электроснабжение основано на низкочастотном трехфазном токе при параллельном использовании индивидуальных фаз. Практически все электростанции имеют генераторы, производящие трехфазный ток. Трансформаторы могут работать с трехфазным или однофазным током. Наличие реактивной мощности в подобных сетях требует установки компенсирующего оборудования.