Водород (h)

Использование водорода

Реакции собирания и распознавания водорода необходимы для извлечения чистого газа, который используется в качестве экологического топлива, а также участвует в различных химических реакциях для получения соединений.Водород применяется в различных отраслях промышленности:

  • при производстве аммиака (NH3);
  • для получения соляной кислоты (HCl);
  • при синтезе метилового спирта;
  • для восстановления металлов;
  • при сварке (в результате взаимодействия водорода и кислорода выделяется большое количество тепла);
  • для получения растительных жиров при производстве маргарина.

Водород использовался для наполнения воздушных шаров и аэростатов. Сегодня сжиженный водород – топливо для ракет.

Рис. 3. Сжиженный водород.

Что мы узнали?

Из урока 9 класса узнали, как получают водород в промышленных и лабораторных условиях. Водород выделяется в ходе реакций металлов, гидридов, фосфора с водой, при газификации угля, при взаимодействии цинка с соляной кислотой и алюминия или кремния со щёлочью. Водород получают из метана путём его окисления, разложения при высокой температуре или при взаимодействии с водой. Также водород выделяется при электролизе солей и разложении воды.

Электролиз воды

Если пропустить через воду электрический ток, жидкость начнёт диссоциироваться на составляющие молекулу воды атомы. В результате процесса электролиза воды получают кислород и водород. Однако в зависимости от природы электродов можно получить озон и перекись водорода.

Схема электролиза воды:

  • анод:
    2H2O → O2 + 4H+ + 4e–;
  • катод:
    4H+ + 4e– → 2H2.

Или:

  • анод:
    3H2O → O3 + 6e– + 6H+;
  • катод:
    O2 + 2H2O + 2e– → H2O2 + 2OH–.

Общее уравнение:

2H2O → 2H2 + O2.

Рис. 2. Схема электролиза воды.

Вода – слабый электролит, поэтому электролиз чистой, дистиллированной воды протекает медленно или не идёт вовсе. Для ускорения процесса в воду добавляют сильный электролит, увеличивающий проводимость электрического тока.

Электролит выбирается так, чтобы исключить конкуренцию между катионами электролита и катионами воды (H+). В противном случае водород не будет произведён. Чтобы исключить конкуренцию, необходимо подобрать электролит, катионы которого будут иметь меньший электродный потенциал, чем H+ воды. На роль катиона электролита подходят:

  • Li+;
  • Rb+;
  • K+;
  • Cs+;
  • Ba2+;
  • Sr2+;
  • Ca2+;
  • Na+;
  • Mg2+.

Для исключения конкуренции анионов, наоборот, подбирают электролит с анионами большего электродного потенциала, чем анион OH– воды. В качестве такого электролита применяется щелочь для образования гидроксильного иона OH–.

Рис. 3. Диссоциация щёлочи.

Для электролиза воды используются сильные щелочи: гидроксид калия (KOH) или натрия (NaOH). В некоторых случаях применяется сильная кислота, например, H2SO4.

Что мы узнали?

Электролиз – процесс образования и оседания на электродах ионов вещества под действием электрического тока. Вода разделяется на катионы водорода и анионы кислорода. Положительные катионы движутся к катоду, отрицательные анионы – к аноду. В некоторых случаях вода диссоциируется на озон и перекись водорода. Из-за низкой способности к диссоциации в воду добавляется сильный электролит, не мешающий образованию водорода и кислорода. Чаще всего добавляется щёлочь или сильная кислота.

Об этой статье

Соавтор(ы):

Эколог

Соавтор(ы): . Бесс Руфф — аспирантка Университета штата Флорида, работает над получением степени PhD по географии. Получила степень магистра экологии и менеджмента в Калифорнийском университете в Санта-Барбаре в 2016 году. Проводила исследования для проектов по морскому пространственному планированию в Карибском море и обеспечивала научную поддержку в качестве дипломированного участника Группы устойчивого рыболовства. Количество просмотров этой статьи: 57 588.

Категории: Химия

English:Make Oxygen and Hydrogen from Water Using Electrolysis

Español:crear oxígeno e hidrógeno a partir de agua usando electrólisis

Deutsch:Durch Elektrolyse aus Wasser Sauerstoff und Wasserstoff erhalten

Italiano:Produrre Idrogeno e Ossigeno dall’Acqua con l’Elettrolisi

Português:Criar Oxigênio e Hidrogênio a Partir da Água por Meio da Eletrólise

中文:用电解法制备氧气和氢气

Français:fabriquer de l’oxygène et de l’hydrogène à partir de molécules d’eau par électrolyse

Nederlands:Waterstof en zuurstof maken door elektrolyse

Печать

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Эксплуатация

После сборки можно начинать испытания прибора. Для этого на конце трубки устанавливают горелку из медицинской иглы и начинают заливать воду. В воду нужно добавить KOH или NaOH. Вода должна быть дистиллированная или талая на крайний случай. Для работы устройства достаточно 10% концентрации щелочного раствора. При заливке воды не должно быть никаких подтеков. Лучше всего перед заливкой продуть конструкцию воздухом, давлением до 1атм. Если водородный генератор выдерживает это давление, то можно заливать воду, если нет, нужно устранить протечки.

После этого к электродам по схеме подсоединяют ЛАТР с диодным мостом. В цепь устанавливают амперметр и вольтметр для контроля работы. Начинают с минимального напряжения и потом постоянно увеличивают, наблюдая за газовыделением.

Предварительно работы лучше проводить на открытом воздухе вне дома

Поскольку установка взрывоопасна, все работы следует проводить с особой осторожностью

При испытаниях наблюдают за работой прибора. Если имеет место маленькое пламя горелки, то может быть или низкое газовыделение в генераторе, или где-то происходит утечка газа. Если раствор помутнел, грязный, его нужно заменить. Также необходимо следить, чтобы прибор не перегревался, а вода не закипела. Для этого регулируют напряжение на источнике тока. И еще одно – пластины при нагревании немного деформируются и могут прилипать одна к одной. Чтобы это исключить, нужно сделать прокладки из резины. Могут также наблюдаться плевки водой – для устранения этого нужно уменьшить уровень воды.

Получение чистого водорода

Электролиз воды

Водород можно получить различными способами. Вот лишь некоторые из них, являющиеся наиболее доступными и распространёнными:

  • Электролиз воды. Наиболее эффективный способ — высокотемпературный.
  • Химическая реакция воды и аллюминиево-галиевого сплава.
  • Получение водорода при высокотемпературной обработке угля и древесины.
  • Переработка мусора, бытовых отходов.
  • Выделение водорода через переработку биомассы (навоза, сена, водорослей и иных отходов сельского хозяйства).

Большинство способов основаны на применении высоких температур и, к сожалению, в условиях обычного домашнего хозяйства неприменимы. Однако есть несколько путей для получения водорода в домашних условиях.

Электролизный водород

Самый доступный и наиболее широко распространённый способ добычи водорода в домашних условиях — при помощи реакции электролиза воды. Специальное оборудование, называемое электролизером, довольно доступно на рынке. При этом среди производителей встречаются как именитых гиганты (например, Honda), так и мелкие производители из Китая или стран СНГ. И если в случае с первыми в качестве предоставляемой вниманию продукции можно не сомневаться, то вот вторые часто подводят

При этом не стоит особо обращать внимание на их яркую и многообещающую рекламу. Недобросовестному производителю ничего не стоит заявить о том, что его продукт самый качественный, хороший и долговечный на рынке

Однако не всё, что он скажет, окажется правдой. Особенно должна настораживать цена, так как генератор не может быть слишком дешёвым. Дешевизна может указывать на не очень качественные материалы, использованные при работе, или экономию на сборке. Установки дорогие не просто так, а за счёт обеспечения безопасности в том числе. Так как водород является взрывоопасным, его утечка может принести много бед. Некачественные шланги, негерметичный накопительный бак — и всё, взрыв обеспечен. Качество исполнения иногда может «хромать», так что лучше однажды не поскупиться и потратиться на хорошее оборудование.

Хороший электролизер способен похвастаться качеством, компактностью и простотой эксплуатации. Его можно установить в любом уголке помещения и в качестве топлива для получения заветного водорода использовать обычную воду из-под крана. Обычно электролизер состоит из риформера, топливных элементов, очистной системы, компрессора и ёмкости для хранения газа. Электроэнергия поступает из сети питания. Самые современные модели и вовсе оснащены солнечными батареями. Такое оборудование точно быстро окупится за счет минимальных затрат на его использование, даже учитывая не самую маленькую стоимость самого агрегата.

Водород из сельскохозяйственных отходов

Нередко в интернете можно встретить упоминания о биогазовых установках. Смысл их работы сводится к тому, что в генератор загружается навоз, он там перерабатывается и на выходе получается метан. Конечно, может использоваться не только навоз, а любой компостируемый материал. Однако чистый навоз является наиболее продуктивным и доступным. Полученный биогаз затем по трубам поступает на нужды хозяйства и используется как привычный природный газ. Однако у этого способа добычи водорода есть пара минусов:

  • Водород как таковой в данном процессе является лишь побочным продуктом. Для того,чтобы его отделить, требуется дополнительная обработка полученного газа. Как правило, никто этим не занимается и водород благополучно погибает в объятиях пламени вместе с метаном.
  • Необходимо непрерывное поступление сырья. То есть в генератор без остановки должен поступать навоз, и в больших количествах. Очевидно, что обычное частное хозяйство не сможет обеспечить постоянный поток сырья. А покупать его на стороне — не выгодно. Вывод: такой метод получения водорода подходит только относительно крупным хозяйствам, готовым предоставлять такие объёмы. Однако им такая установка выгоды не принесёт, разве что позволит с пользой для хозяйства избавляться от отходов.

Кроме того, на долю водорода на выходе приходится всего лишь 2-12% водорода. То есть основная масса продукта — метан. Чтобы обеспечивать хозяйство именно водородом, потребуется неимоверное количество сырья и огромные производственные мощности. Так что даже крупным хозяйствам невыгодно фокусироваться именно на выделении водорода. Им придётся либо сжигать его вместе с метаном, что и делается на практике, либо пытаться использовать его также в хозяйстве. Однако для выделения и хранения водорода снова потребуется дополнительное оборудование, а значит, дополнительные расходы. Таким образом, биогазовая установка на сегодняшний день является самым невыгодным методом добычи чистого водорода.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.


Пример электролиза на растворе хлорида натрия

Самодельный водородный генератор:

Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.

Рисунок №1 – Структурная схема водородной горелки

Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).

Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:

Рисунок №2 – Электролизёр

Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!

Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.

Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).

Рисунок №3 – Как подсоединить провода

Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!

Рисунок №4 – Изоляция пластин

На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция)

Обслуживание генераторов водорода

Оборудование подлежит тщательному уходу. Специалисты советуют придерживаться следующих советов:

  • не улучшать и не изменять самостоятельно генератор даже при наличии профессионального инженерного чертежа;
  • рекомендовано установить на оборудование специальные датчики температуры внутри теплообменника, что даст возможность контролировать процесс перегрева воды;
  • запорную арматуру можно установить в горелку и подключить ее к датчику температурных показателей. Это даст прибору возможность нормально охлаждаться.

Самодельный генератор позволяет получить водород, но применяется он в основном для экспериментов и газосварки. Чтобы обогреть немалое строение, КПД аппарата попросту не хватит. И при этом не стоит забывать о низком КПД устройства, а также хлопотах и затратах при его сборке.

Физические свойства

Эмиссионный спектр излучения атомов водорода на фоне сплошного спектра в видимой области

Эмиссионный спектр атомов водорода. Четыре видимые глазом спектральные линии серии Бальмера

Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н2. При нормальных условиях это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9·106 Дж/кг, малорастворим в воде — 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Фазовая диаграмма водорода

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода.
В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.

В 1935 году Уингер и Хунтингтон высказали предположение о том, что при давлении свыше 250 тысяч атм водород может перейти в металлическое состояние. Получение этого вещества в устойчивом состоянии открывало очень заманчивые перспективы его применения — ведь это был бы сверхлёгкий металл, компонент лёгкого и энергоёмкого ракетного топлива. В 2014 году было установлено, что при давлении порядка 1,5—2,0 млн атм водород начинает поглощать инфракрасное излучение, а это означает, что электронные оболочки молекул водорода поляризуются. Возможно, при ещё более высоких давлениях водород превратится в металл. В 2017 году появилось сообщение о возможном экспериментальном наблюдении перехода водорода в металлическое состояние под высоким давлением.

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород.
Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Равновесная мольная концентрация параводорода в смеси в зависимости от температуры

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1. Десорбированный с угля параводород при нагревании превращается в ортоводород с образованием равновесной смеси. При комнатной температуре равновесна смесь ортоводорода и параводорода в отношении около 75:25. Без катализатора взаимное превращение происходит относительно медленно, что даёт возможность изучить свойства обеих модификаций. В условиях разреженной межзвёздной среды характерное время перехода в равновесную смесь очень велико, вплоть до космологических.

Оцените статью:
Оставить комментарий
Adblock
detector