Полевой транзистор с управляющим pn-переходом (jfet-транзистор)

Физика p — n-перехода[править]

Файл:Энергетическая диаграмма p-n перехода.png Энергетическая диаграмма p — n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении

При контакте двух областей n— и p— типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p-области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область объёмного заряда, состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт — устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля. Эти токи компенсируют друг друга). Между n— и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p— и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p — n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p — n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p — n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 — 106 раз. Благодаря этому p — n-переход может использоваться для выпрямления переменных токов (диод).

Ширина p-n перехода

Ешё одним важным параметром p-n перехода является его ширина δ = δp
+ δn
. Ширина p-n перехода нам потребуется при определении его ёмкости. В общем случае концентрации основных носителей в n— и p
областях не равны. Ширину запирающего слоя δ можно найти, решив уравнения Пуассона отдельно для n
и p-области:

Задав для этих выражений следующие граничные условия:

получим значения потенциала для n— и p-области вблизи p-n перехода:

−δp ;        (10)
для 0 x n

В точке x = 0 оба решения должны давать одинаковые значения φ и .
Приравняв и , можно записать:

Из равенства (12) видно, что толщина слоев объемных зарядов в n— и p-областях обратно
пропорциональна концентрациям примесей и в несимметричном p-n переходе запирающий слой расширяется
в область с меньшей концентрацией примесей. Увеличение концентрации атомов примеси сужает запирающий слой, а уменьшение
расширяет его
. Это часто используется для придания полупроводниковым приборам требуемых свойств.

Дата последнего обновления файла
11.05.2020

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки. В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником. В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Методы формирования

Вплавление примесей

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется сплавным.

Диффузия примесей

В основе технологии получения диффузного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется эпитаксиальным.

Применение запирающего слоя в JFET транзисторах

Но где же можно применить свойство “изменение толщины диэлектрика под воздействием напряженности электрического поля”? А давайте рассмотрим небольшой пример. Может быть вам потом станет ясно, где можно применить это свойство ;-)

Итак, провинциальный городок X. Обычный будний день. Поток людей спешит по своим делам. Около тротуара стоит лавка с хот-догами. Пока что она еще не открылась, так как продавец сладко спит,  поэтому все проходят мимо этой лавки:

Но вот она открывается, и первые зеваки начинают “тусить” возле нее, чтобы отведать позавчерашних холодных протухших хот-догов)).

Продавец видит, что дела идут в гору и начинает еще быстрее обслуживать клиентов. То есть он вкладывает всю свою энергию, чтобы выдержать темп. Он начинает работать напряженнее. Чем напряженнее он обслуживает клиентов, тем их становиться больше. Зевакам ведь интересно, что за тусовка там намечается. А раз все покупают, то и они тоже хотят. Народу становится чуток больше.

Народ тихонько подваливает и продавец, чтобы не упустить выгоду, начинает работать изо всех сил. Наш бедный продавец работает, как белка в колесе. Тут уже не расслабишься, иначе народ уйдет к продавцу пончиков. На лбу у него выступил пот, напряжен так, что вот-вот уже лопнет от усталости! Но гляньте на тротуар… Движение ПЕРЕКРЫЛИ зеваки, которые жить не быть хотят купить эти протухшие хот-доги.

Мораль сей басни такова:

Коль хочешь жрать, готовь с утра).

Теперь давайте представим, что тротуар – это проводник. Люди – это электроны. Продавец – это какой-либо заряд, который если захочет, может работать либо напряженнее, либо вообще закрыть лавку.

Итак, что у нас тогда получается. Пока лавка закрыта, толпа зевак спокойно идет по своим делам в одном направлении. Продавца нет на месте. То есть заряд ноль. Это значит, что в данном направлении у нас спокойно течет электрический ток,  так как упорядоченное движение заряженных частиц – это и есть электрический ток

Как только продавец открыл лавку и стал работать,  некоторые зеваки стали толпиться у лавки. Но эта кучка зевак теперь мешается на тротуаре людям, которые действительно куда-то спешат по делам. То есть эта кучка зевает оказывает сопротивление потоку людей, спешащим по делам. Уже интереснее. Раз мешаются, значит меньше людей сможет пройти ниже толпы зевак за какое-то время. А что у нас значит этот параметр? Не силу тока ли случайно? Вот именно! Сила тока стала меньше!

Итак, теперь главный вопрос: от чего зависит поток людей? Да от продавца, мать его за ногу!

Как только он начинает орать: “Свежие хот-доги, бери, налетай, теще покупай!”, народу стает больше. То есть как только он начинает работать напряженнее, так и толпа зевак начинает больше заграждать тротуар. И все может закончится тем, что движение на тротуаре встанет колом. И да, кстати. Стоящая толпа зевак – это уже не электроны. Это обедненный слой, диэлектрик)

И вот ученые инженеры, которые поняли, что можно менять силу тока, управляя напряженностью электрического поля, создали радиоэлемент, который назвали в честь электрического поля, и имя его полевой транзистор.

Контактная разность потенциалов p-n перехода

Между областями с различными типами проводимости возникает собственное электрическое поле напряженностью Eсоб,
показанное на рисунке 1, а. Оно создаётся двумя областями объемных зарядов с контактной разностью потенциалов
Uк. Её изменение в зависимости от положения относительно p-n контакта показано на рисунке 1, г.
За пределами области объемного заряда области полупроводника n- и р-типа остаются электрически нейтральными.

Потенциальная энергия электрона и электрический потенциал связаны соотношением W = −qU. Поэтому
образование нескомпенсированных объемных зарядов вызывает понижение энергетических уровней
n-области и повышение энергетических уровней р-области полупроводника. Смещение энергетических зон прекратится, когда
уровни Ферми n- области Wфn и р-области Wфp совпадут. Эта ситуация
показана на графике энергетических зон p-n перехода, приведенном на рисунке 2.

Совпадение уровней Ферми n- и p- областей соответствует установлению динамического равновесия между этими областями
полупроводника и возникновению между ними потенциального барьера Uk:

Подстановка в это выражение результатов логарифмирования формул (1) из статей и позволяет получить следующее равенство:

Из этого выражения видно, что контактная разность потенциалов Uk зависит от отношения концентраций
носителей зарядов в р- и n-областях p-n перехода.

Если ввести параметр φт = kT/q, то концентрацию неосновных носителей в зависимости
от концентрации основных носителей можно записать в следующем виде:

Параметр φт получил название температурный потенциал. Он имеет большое значение при работе
с полупроводниковыми электронными приборами и часто используется в расчетах. При комнатной температуре (Т =
300°К) температурный потенциал φт ≈ 26 mВ.

Выражения (6) и (7) пригодятся нам при определении вольтамперной характеристики
p-n перехода.

Что такое сток, исток и затвор

Полевой транзистор имеет три вывода. Вывод, с которого начинают свой путь электроны (основные носители) называется ИСТОКОМ. От слова “источник”. В разговорной речи мы источником называем родник, из которого бьет чистая вода. Поэтому нетрудно будет запомнить, что ИСТОК – это тот вывод, откуда начинают свой путь основные носители заряда. В данном случае это электроны. Место, куда они стекаются, называются СТОКОМ.

Эти два понятия нетрудно будет запомнить, если вспомнить водосточную систему с крыш ваших домов.

Истоком будет труба, которая собирает всю капли дождя с шифера или профнастила

А стоком будет конец  трубы, из которой вся дождевая вода будет выбегать на землю:

Но опять же, не забывайте, что мы говорим об электронах! А электроны бегут к плюсу. То есть по-нашенски получается что на СТОК мы подаем плюс, а на ИСТОК – минус.

А для чего нужен третий вывод?

Так, а давайте по приколу где-нибудь обрежем нашу водосточную трубу и воткнем туда вот такой прибамбас:

Называется он дисковым затвором. Чего бы мы добились, если бы воткнули этот дисковый затвор в нашу водосточную трубу? Да покрутив за баранку, мы могли бы регулировать поток воды! Мы можем вообще полностью перекрыть трубу, тогда в этом случае на стоке не стоит ждать дождевую водичку. А можем открыть наполовину, и регулировать поток воды со стока, чтобы при ливне у нас поток воды не смыл грядки и не сделал большую яму в земле. Удобно? Удобно.

Так вот, третий вывод полевого транзистора, который соединяется с P полупроводником называется тоже ЗАТВОРОМ и служит как раз для того, чтобы регулировать силу тока в бруске, через который бежит электрический ток ;-) Для этого достаточно подать на него напряжение, чтобы P-N переход был включен в обратном направлении, то есть в нашем случае подать МИНУС относительно ИСТОКА. Вся картина в целом будет выглядеть как-то вот так:

Ёмкость p — n-перехода и частотные характеристики[править]

p — n-переход можно рассматривать как плоский конденсатор, обкладками которого служат области n— и p-типа вне перехода, а изолятором является область объемного заряда, обеднённая носителями заряда и имеющая большое сопротивление. Такая ёмкость называется барьерной. Она зависит от внешнего приложенного напряжения, поскольку внешнее напряжение меняет пространственный заряд. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между n— и p-областями полупроводника, и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды неподвижны и связаны с ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением электрической ёмкости перехода. В зависимости от площади перехода, концентрации легирующей примеси и обратного напряжения барьерная емкость может принимать значения от единиц до сотен пикофарад. Барьерная ёмкость проявляется при обратном напряжении; при прямом напряжении она шунтируется малым сопротивлением p — n-перехода. За счёт барьерной ёмкости работают варикапы.

Кроме барьерной ёмкости p — n-переход обладает так называемой диффузионной ёмкостью. Диффузионная ёмкость связана с процессами накопления и рассасывания неравновесного заряда в базе и характеризует инерционность движения неравновесных зарядов в области базы. Диффузионная ёмкость обусловлена тем, что увеличение напряжения на p — n-переходе приводит к увеличению концентрации основных и неосновных носителей, то есть к изменению заряда. Величина диффузионной ёмкости пропорциональна току через p — n-переход. При подаче прямого смещения значение диффузионной ёмкости может достигать десятков тысяч пикофарад.

Файл:Эквивалентная схема p-n перехода.png Эквивалентная схема p — n-перехода. Cб — барьерная ёмкость, Cд — диффузионная ёмкость, Ra — дифференциальное сопротивление p — n-перехода, r — объёмное сопротивление базы.

Суммарная ёмкость p — n-перехода определяется суммой барьерной и диффузионной ёмкостей. Эквивалентная схема p — n-перехода на переменном токе представлена на рисунке. На эквивалентной схеме параллельно дифференциальному сопротивлению p — n-перехода Rа включены диффузионная ёмкость Cд и барьерная ёмкость Сб; последовательно с ними включено объёмное сопротивление базы r. С ростом частоты переменного напряжения, поданного на p — n-переход, емкостные свойства проявляются все сильнее, Rа шунтируется ёмкостным сопротивлением, и общее сопротивление p — n-перехода определяется объёмным сопротивлением базы. Таким образом, на высоких частотах p — n-переход теряет свои нелинейные свойства.

Равновесие (нулевое смещение)

В PN-переходе без внешнего приложенного напряжения достигается условие равновесия. Посмотрим как.

Область истощения

Полупроводник n-типа имеет большее количество свободных электронов, чем полупроводник p-типа. Из-за этой высокой концентрации электронов на n-стороне они отталкиваются друг от друга.

Из-за отталкивания свободные электроны распространяются (рассеиваются) во всех направлениях. Некоторые из них пересекают границу между n и p. Когда свободный электрон входит в р-область, он притягивается к положительной дыре и рекомбинирует с ней. Когда это происходит, дыра исчезает, и свободный электрон становится валентным электроном.

Когда свободный электрон падает в дырку на p-стороне, атом p-стороны получает дополнительный электрон. Атом, который получает дополнительный электрон, имеет больше электронов, чем протонов, благодаря чему он становится отрицательным ионом.

Точно так же каждый свободный электрон, который покидает атом n-стороны, создает дыру в атоме n-стороны. Атом, который теряет электрон, имеет больше протонов, чем электронов, благодаря чему он становится положительным ионом.

Таким образом, каждый раз, когда электрон пересекает соединение и рекомбинирует с дыркой, он создает пару ионов. На следующем рисунке показаны эти ионы на каждой стороне соединения.

Каждая пара положительных и отрицательных ионов на стыке называется диполем. Создание диполя означает, что один свободный электрон с n-стороны и одна дырка с p-стороны выведены из оборота. По мере увеличения числа диполей область вблизи перехода истощается основными носителями заряда. Поэтому мы называем этот незаряженный регион областью истощения.

Барьерный потенциал

Каждый диполь имеет электрическое поле между положительными и отрицательными ионами. Всякий раз, когда свободный электрон пытается войти в область истощения, это электрическое поле выталкивает его обратно в область n.

Напряженность электрического поля увеличивается с каждой электронно-дырочной рекомбинацией внутри области обеднения. Поэтому электрическое поле в конечном итоге останавливает диффузию электронов через соединение, и достигается равновесие.

Электрическое поле между ионами эквивалентно разности потенциалов, называемых барьерным потенциалом. При комнатной температуре барьерный потенциал составляет примерно 0,3 В для германиевых диодов и 0,7 В для кремниевых диодов.

Воздействие радиации

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Диод I-V характеристики

На следующем рисунке показана базовая диодная схема, в которой диод смещен в прямом направлении. Резистор R S обычно используется, чтобы ограничить прямой ток I F.

После подключения этой схемы, если вы измерите напряжение и ток диода для прямого и обратного смещения и построите график, то вы получите график, который выглядит следующим образом:

Этот график называется вольт-амперная характеристика (IV). Это самая важная характеристика диода, потому что она определяет, сколько тока протекает через диод для данного напряжения.

Резистор является линейным устройством, потому что его кривая IV является прямой линией. Однако, диод отличается. Это нелинейное устройство, поскольку его кривая IV не является прямой линией. Это связано с барьерным потенциалом.

В зависимости от приложенного к нему напряжения диод будет работать в одной из трех областей: прямое смещение, обратное смещение и пробой.

Теория p-n перехода

В электронике наиболее широко используется сочетание в одном полупроводнике зон дырочной и электронной проводимости, образующих плоскостные и точечные p-n переходы.

P-n переход — граница между двумя типами полупроводниковых кристаллов, соединённых в одном полупроводниковом приборе.

Такие переходы являются элементарными «строительными блоками» большинства полупроводниковых устройств:

  • диодов;
  • транзисторов;
  • солнечных батарей;
  • светодиодов;
  • интегральных микросхем.

Когда разные типы полупроводниковых кристаллов контактируют, свободные электроны из полупроводника n-типа мигрируют в него за счёт диффузии и вступают во взаимодействие с дырками (их суммарный заряд становится равен нулю). Но часть электронов не компенсируется положительным зарядом, образуя отрицательно заряженный слой на границе p-области.

Очевидно, что этот слой вызовет движение свободных электронов в n-области, которые будут отталкиваться под действием кулоновских сил и оставлять на своих местах положительный заряд. На границе n-области появится слой, заряженный положительно.

Эти два слоя будут вести себя как потенциальный барьер (запирающий слой), который называют p-n переходом.

Если p-n переход поместить во внешнее электрической поле (подключить источник тока), то поле будет влиять на сопротивление потенциального барьера:

  1. Направление вектора напряжённости внешнего электрического поля совпадает с направлением поля запирающего слоя, то основные носители заряда не движутся. За счёт движения неосновных носителей существует слабый ток. Это включение полупроводника называют обратным или запертым состоянием.
  2. Направление внешнего поля имеет противоположное направление полю p-n области, то существует ток основных носителей заряда. Говорят, что устройство находится в прямом проводящем состоянии.

Можно сделать вывод, что устройство с p-n переходом пропускает ток только в одном направлении.

Обозначение и определение основных электрических параметров диодов



Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью. Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Обратный ток

Обратный ток в диоде состоит из тока неосновной несущей и тока утечки на поверхность. Этот обратный ток настолько мал, что вы даже не можете его заметить, и он считается почти нулевым.

Обратный ток насыщения

Как известно, тепловая энергия непрерывно создает пары свободных электронов и дырок. Предположим, что тепловая энергия создала свободный электрон и дырку внутри области истощения.

Область истощения выталкивает вновь созданный свободный электрон в область n, заставляя его покинуть правый конец диода. Когда он достигает правого конца диода, он входит во внешний провод и течет к положительной клемме батареи.

С другой стороны, вновь созданная дырка помещается в область p. Эта дополнительная дырка на стороне p позволяет одному электрону с отрицательной клеммы батареи войти в левый конец диода и упасть в дырку.

Поскольку тепловая энергия непрерывно создает пары электрон-дырка внутри области истощения, во внешней цепи протекает небольшой непрерывный ток. Такой обратный ток, вызываемый термически создаваемыми неосновными носителями, называется током насыщения. Название насыщения означает, что увеличение обратного напряжения не приведет к увеличению количества термически производимых неосновных носителей.

Поверхностный ток утечки

В обратном смещенном диоде существует другой ток. Небольшой ток течет по поверхности кристалла, известной как ток поверхностной утечки.

Атомы на верхней и нижней поверхности кристалла не имеют соседей. У них всего шесть электронов на валентной орбите. Это означает, что у каждого поверхностного атома есть две дырки. Следующее изображение показывает эти дырки вдоль поверхности кристалла.

Из-за этого электроны проходят через поверхностные дырки от отрицательной клеммы батареи к положительной клемме батареи. Таким образом, небольшой обратный ток протекает вдоль поверхности.

Электронно-дырочный переход (p – n переход).

p – n
переходом называют область, находящуюся на границе раздела между дырочной и
электронной областями одного кристалла. Переход создаётся не простым
соприкосновением полупроводниковых пластин p и n типа. Он создаётся в одном кристалле введением двух
различных примесей, создающем в нём электронную и дырочную области.

Рис.1.  Механизм
образования и действия p – n
перехода.

а – основные и неосновные носители в областях
полупроводника.

б – образование p – n перехода.

в – направление протекания диффузионного тока и тока
проводимости.

г –  p–n
переход под действием внешнего обратного напряжения.

1 – электроны; 2 – дырки; 3 – граница раздела; 4 –
неподвижные ионы.

Рассмотрим полупроводник, в котором имеются две области:
электронная и дырочная. В первой – высокая концентрация электронов, во второй –
высокая концентрация дырок. Согласно закону выравнивания концентрации электроны
стремятся перейти ( диффундировать ) из n – области,
где их концентрация выше в p – область, дырки же –
наоборот. Такое перемещение зарядов называется диффузией. Ток, который при этом
возникает – диффузионным. Выравнивание концентраций происходило бы до тех пор,
пока дырки и электроны не распределились бы равномерно, но этому мешают силы
возникающего внутреннего электрического поля. Дырки, уходящие из p – области оставляют в ней отрицательно ионизированные
атомы, а электроны, уходящие из n   области –
положительно ионизированные атомы. В результате дырочная область становится
заряженной отрицательно, а электронная – положительно. Между областями
возникает электрическое поле, созданное двумя слоями зарядов.

Таким образом, вблизи границы раздела электронной и дырочной
областей полупроводника возникает область, состоящая из двух слоёв противоположных
по знаку зарядов, которые образуют так называемый  p – n переход. Между  p и n областями устанавливается потенциальный барьер. В
рассматриваемом случае внутри образовавшегося  p – n  перехода действует электрическое поле Е, созданное

 двумя слоями противоположных зарядов. Если направление
электронов, попавших в электрическое поле, совпадает с ним, то электроны
тормозятся. Для дырок – наоборот. Таким образом, благодаря возникшему
электрическому полю, процесс диффузии прекращается. На РИС.1 видно, что и в  n-  и в  p- области имеются как
основные, так и неосновные носители заряда. Неосновные носители образуются за
счёт собственной проводимости. Электроны  p – области,
совершая тепловое хаотическое движение, попадают в электрическое поле p – n перехода и переносятся в  n область. То же происходит с дырками n
– области. Ток, образованный основными носителями, называют диффузионным током,
а неосновными —  током проводимости. Эти токи направлены навстречу друг другу,
и так как в изолированном проводнике общий ток равен нулю, то они равны. Приложим
теперь к переходу внешнее напряжение плюсом к n –
области, а минусом к p – области. Поле, создаваемое
внешним источником, усилит действие внутреннего поля  p – n перехода. Диффузионный ток
уменьшится до нуля, так как электроны из  n – области и
дырки из p – области увлекаются от p
– n перехода к внешним контактам, в результате чего p – n переход расширяется. Через
переход проходит только ток проводимости, который называют обратным. Он состоит
из электронного и дырочного токов проводимости. Напряжение, приложенное таким
образом, называют обратным напряжением. Зависимость тока от напряжения показана
на рисунке.

Рис. Вольт-амперная характеристика
p-n перехода. 2 – прямая ветвь; 1 – обратная ветвь.

Если внешнее напряжение приложено плюсом к p
– области, а минусом к  n – области, то электрическое
поле источника будет направлено навстречу полю p – n перехода и ослабит его действие. При этом увеличится
диффузионный (прямой) ток (2). Это явление положено в основу работы
полупроводникового диода.

Взаимодействие полупроводников

Мы с вами  знаем из статьи Биполярный транзистор, что есть два типа искусственных легированных полупроводников. Это полупроводник N-типа и полупроводник P-типа. Как вы помните, в полупроводнике N-типа у нас избыток электронов (там их ОЧЕНЬ много):

А в полупроводнике P-типа избыток дырок:

Если вы не забыли, электроны у нас обладают отрицательным зарядом ( – ), а дырки – положительным зарядом ( + ). Поэтому, на картинках мы заполнили наши бруски полупроводников соответствующими зарядами.

А что будет, если соединить их друг с другом?

Так как электроны и дырки постоянно находятся в хаотическом движении, на границе соединения P и N полупроводников начнется диффузия. Что такое диффузия? Как говорит нам Википедия, диффузия – это процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого вещества.

Пример:

Если пустить шептуна на парах, то в этом случае ваши вонючие молекулы из пукана будут смешиваться с молекулами воздуха и сосед через парту учует ваш запах пельменей, которые вы съели на ужин.

На границе полупроводников происходит то же самое! Электроны и дырки начинают смешиваться.

Но если ваши вонючие молекулы, выпущенные из пукана, могут спокойно смешиваться с воздухом пока не займут все пространство кабинета, то на границе P-N перехода есть камень преткновения. И он заключается в том, что электроны и дырки обладают зарядом и начинают взаимодействовать с друг другом. Начинает работать правило, одноименные заряды отталкиваются, а разноименные притягиваются. Так как электроны и дырки разноименных зарядов, они начинают притягиваться к друг другу. То есть с одной стороны идет диффузия, а с другой стороны взаимодействие зарядов. Когда все это устаканивается, получается вот такая картинка:

Оцените статью:
Оставить комментарий