Фотореле и принципы их работы

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

https://youtube.com/watch?v=MAH_cO__Np0

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе –  подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону.  Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Пример схемы датчика освещенности

Световой датчик

Если требуется базовый датчик освещенности, можно использовать схему LDR, такую ​​как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится. Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству. Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.

Аудио компрессоры

Аудио компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков. Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала. Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.

Характеристики фоторезисторов

Итак, у фоторезисторов есть основные характеристики, на которые обращаются внимание при выборе:

  • Темновое сопротивление. Как понятно из названия — это сопротивление фоторезистора в темноте, то есть при отсутствии светового потока.
  • Интегральная фоточувствительность – описывает реакцию элемента, изменение тока через него на изменение светового потока. Измеряется при постоянном напряжении в А/лм (или мА, мкА/лм). Обозначается как S. S=Iф/Ф, где Iф – фототок, а Ф – световой поток.

При этом указывается именно фототок. Это разность между темновым током и током освещенного элемента, то есть той частью, которая возникла из-за эффекта фотопроводимости (то же что и фоторезистивный эффекта).

Примечание: темновое сопротивление конечно же характерно для каждой конкретной модели, например, для ФСК-Г7 – это 5 МОм, а интегральная чувствительность 0,7 А/лм.

Помните, что фоторезисторы обладают определенной инерционностью, то есть его сопротивление изменяется не моментально после облучения световым потоком, а с небольшой задержкой. Этот параметр называется граничная частота. Это частота синусоидального сигнала модулирующего световой поток через элемент, при которой чувствительность элемента снижается в корень из 2 раз (1.41). Быстродействие компонентов обычно лежит в пределах десятков микросекунд (10^(-5)с). Таким образом, использование фоторезистора в схемах, где нужна быстрая реакция ограничено, а часто и неоправданно.

Какие материалы используют для изготовления резисторов?

В качестве материалов используют сплавы высоко сопротивления, напыление материала на керамическую основу и уголь. Резисторы могут использоваться дискретно, как отдельный элемент, так и в составе интегральных электросхем.

В одном компьютере около нескольких тысяч резисторов и отобразить их все на схеме весьма сложно.

Как отличить резисторы на электросхемах?

Любой тип резистора на схемах отечественных производителей отображается в виде прямоугольника. На некоторых  зарубежных схемах в виде зигзагообразной линии. Подключение к схеме указывается линиями, нарисованными от середины сторон прямоугольника. Если резистор меняет своё сопротивление от воздействия внешних факторов (управление оператором или действие окружающей среды), то на схеме добавляется дополнительная линия или отрезок со стрелкой на конце или без, расположенный к середине прямоугольника или пересекает его.

Но есть ещё резисторы, изменяющие свои характеристики, которые можно использовать для своих целей. Когда в качестве материала для изготовления резистора используют высокотемпературные сплавы и подают на него напряжение, то такой резистор превращается в источник тепла. Как правило, такие элементы всегда проволочные и могут быть открытого и закрытого типа, то есть помещаться внутрь полости, изолирующей его от внешней среды.

Самый широко распространённый подобный элемент — это трубчатый электронагреватель (ТЭН). Используется везде, где требуется получить тепло. Ну, да. Вы догадались. Это бойлер, котёл, плита, чайник и многие другие электронагревательные приборы.

На схемах такие сопротивления обозначаются прямоугольником, разделённым внутри на четыре равные части. Буквенное обозначение термоэлемента всегда одно — EK.

Основными характеристиками резистора являются: указанное на нём величина сопротивления, которая является его номинальным значением; номинальная мощность рассеяния и возможные отклонения действительного значения сопротивления от номинального, указанного на корпусе.

Мощность электрического тока, которую резистор может длительное время выдержать и рассеивать в виде тепла без ущерба для его работы, принято называть мощностью рассеяния и обозначать её в ваттах.

К примеру: резистор с сопротивлением 100 Ом пропускающий через себя электрический ток силой 0,1А, рассеивает мощность в виде тепла около 1Вт. При меньшей расчётной характеристике мощности рассеяния резистора и большем токе, проходящем через него, данный резистор быстро сгорает, то есть электрически недостаточно прочен.

Обозначение мощности на рисунке с резистором наносится непосредственно в значок, отображающий резистор или рядом с ним и выражается в виде римских цифр, за исключением указанной мощности 0,5Вт — поперечная черта, 0,25Вт — одна косая черта, 0,125Вт — две косые черты.

Отклонение действительного сопротивления от номинального выражают в процентах. К примеру: номинал резистора 100Ом с допуском 10% означает, что фактическое — действительное сопротивление может находится в пределах от 90Ом до 110Ом. Чем меньше величина процента указана на корпусе резистора, тем более близка действительная величина сопротивления к указанной.

Как понять какой резистор?

Когда на схеме обозначены два вывода, это значит, что резистор постоянный и рабочее сопротивление его не изменяется в нормальном режиме. А вот третий вывод или пересекаемая линия говорят о переменном, подстроечном или нелинейном сопротивлении (зависит от внешних факторов: свет, влага, температура, магнитное поле,  напряжение, освещённость).

Обозначение у каждого типа своё: на рисунке постоянных, переменных и подстроечных резисторов рядом наносится буква R; нелинейные  — обозначаются буквой R с добавленным буквенного символом, в зависимости от типа воздействия физического фактора (температура — t, напряжение — u и т.д.). Пример: Ru, Rt. Символ может стоять рядом и может указываться на дополнительной линии, пересекаемой изображение резистора.

Варистор (сопротивление зависит от приложенного напряжения) — Ru.

Термистор (сопротивление зависит от температуры) — Rt.

Фоторезистор (сопротивление зависит от его освещённости) — Rf.

Величина сопротивления резисторов указывается на рисунке рядом с изображением резистора, в изображении или в специальной таблице величин, приложенной к схеме.

Маркировка на корпусе резисторов наносится цифровая или цветовая, которая более удобна при определении всех величин сопротивления.

Как определить прибор на электросхеме

Как определить конденсатор на схеме

«Подписаться на рассылку» 1 445

Где используется

Когда мы узнали об устройстве и параметрах фоторезисторов, давайте поговорим о том, для чего он нужен на конкретных примерах. Хоть и применение фотосопротивлений ограничено их быстродействием, от этого область применения меньшей не стала.

  1. Сумеречные реле. Их еще называют фотореле – это устройства для автоматического включения света в темное время суток. На схеме ниже изображен простейший вариант такой схемы, на аналоговых компонентах и электромеханического реле. Её недостатком является отсутствие гистерезиса и возможное возникновение дребезжание при приграничных величинах освещенности, в результате чего реле будет дребезжать или включаться-отключаться при незначительных колебаниях освещенности.
  2. Датчики освещенности. С помощью фоторезисторов можно детектировать слабый световой поток. Ниже представлена реализация такого устройства на базе ARDUINO UNO.
  3. Сигнализации. В таких схемах используются преимущественно элементы, чувствительные к ультрафиолетовому излучению. Чувствительный элемент освещается излучателем, в случае появления препятствия между ними – срабатывает сигнализация или исполнительный механизм. Например, турникет в метро.
  4. Датчики наличия чего либо. Например, в полиграфической промышленности с помощью фоторезисторов можно контролировать обрыв бумажной ленты или количество листов, подаваемых в печатную машину. Принцип работы подобен тому, что рассмотрен выше. Таким же образом можно считать количество продукции, прошедшей по конвейерной ленте, или её размер (при известной скорости движения).

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Как сделать фотореле своими руками
  • Как подключить датчик движения для освещения
  • Что такое резистор и для чего он нужен

Опубликовано:
17.12.2018
Обновлено: 17.12.2018

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А

Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели)

Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

  Новый форд куга тест драйв видео

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Примечания

  1. Бирюков С.В., Чередов А.И. Метрология: Тексты лекций. – Омск: Изд-во ОмГТУ, 2000, — 110 с
  2. ГОСТ 23737-79 «Меры электрического сопротивления. Общие технические условия»
  3. Марио Льоцци История физики — М.: Мир, 1970 — стр. 261
  4. . Internet Archive: digital library of free Books, Movies, Music & Wayback Machine. Дата обращения 3 мая 2013.
  5.  (недоступная ссылка). «E-Scientist.RU». Дата обращения 3 мая 2013.
  6. это устройство не следует именовать «магазином сопротивлений» поскольку оно не имело специальных элементов для коммутации
  7. Bob Mills.  (англ.). Australasian Telephone Collectors Society Inc. (1996). Дата обращения 12 января 2014.
  8. Кушнир В. Ф. Электрорадиоизмерения — Л.:Энергоатомиздат — 1983 — стр.15
  9. Войнаровский П. Д.,. Электрические измерительные аппараты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  10. Магазин сопротивлений // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Как работает фоторезистор

В полной темноте, сопротивление этих радио компонентов огромное, может доходить до десятков МОм, но как только элемент подвергается воздействию света, его сопротивление резко снижается до долей Ома.

Фоторезисторы (ФР) обладают высокой чувствительностью в достаточно широком диапазоне (от инфракрасного до рентгеновского спектра), которая и зависит от длины волны светового потока. Эти радио компоненты все еще применяются во многих электронных устройствах благодаря их высокой стабильности во времени, малым размерам и богатым номиналам сопротивлений.

Их обычно изготавливают в пластиковом корпус с прозрачным окном и двумя внешними выводами, полярность подсоединения разницы не играет. Фоторезистор – это датчик (преобразователь), электрическое сопротивление которого изменяется в зависимости от интенсивности поступающего на него светового потока. Чем он сильнее, тем больше генерируется свободных носителей зарядов (электронов) и тем ниже сопротивление фоторезистора.

Два внешних металлических вывода этого датчика идут через керамический материал основания к специальной светочувствительной пленке, которая по свойству материал и своей геометрии задает электрические свойства сопротивления фоторезистора. Так как фоточувствительное вещество по своей природе с достаточно большим внутренним сопротивлением, то между обоими выводами с тонкой дорожкой, при средней световой интенсивности, получается низкое общее сопротивление фоторезистора. По аналогии с человеческим глазом, фоторезистор чувствителен к определенному интервалу длины световой волны

При выборе датчика приходится обращать на это пристольное внимание, т.к иначе он может совсем не среагировать на источник света

У фоторезисторов обязательным параметром задается и температурный диапазон. Если использовать преобразователь при отличающихся температурах, то нужно обязательно добавить уточняющие преобразования, т.к. свойство сопротивления этого фотоэлемента зависит от температуры. Для характеристики интенсивности света применяют специальную величину называемую освещенность (E). Она показывает количество светового потока, который достигнет определенной поверхности. Для измерения единицы в системе СИ применяется физическая люкс (лк), где один люкс означает, что на поверхность размером один метр в квадрате равномерно падает поток света освещенностью в один люмен (лм). В реальных условиях световой поток практически никогда не падает равномерно на поверхность, поэтому освещенность получается несколько большей в среднем значении.

По сути это обычный транзистор, но без крышки в буквальном смысле. Крышка, закрывающая кристалл прибора, конечно, есть, но она выполнена из прозрачного материала и видимый свет может попадать на кристалл. Подавая на базу некоторое напряжение, можно управлять сопротивлением перехода эмиттер-коллектор. Но оказывается, сопротивлением перехода можно управлять и обычным светом.

Фототранзистор – это обычный транзистор, который имеет еще одну, дополнительную «базу» – световую. Освещаем – открываем транзистор. В таком включении вывод базы фототранзистора можно вообще не использовать – его роль выполняет свет.

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».

Оцените статью:
Оставить комментарий