Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки
Содержание
- 1 Магнитное поле
- 2 Определение направления вектора магнитной индукции с помощью правила буравчика
- 3 Физический смысл
- 4 Кратные и дольные единицы тесла:
- 5 Единица — магнитная индукция
- 6 Сила Лоренца[править]
- 7 Магнитная индукция
- 8 Формула и обозначения
- 9 Намагничивание ферромагнетиков
- 10 Магнитное поле[править]
- 11 Открытие электромагнитной индукции
- 12 Правило правой руки
- 13 Как связана индукция и напряженность магнитного поля?
Магнитное поле
В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.
Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.
Рисунок 1. Магнитное поле вокруг проводника с током |
Рисунок 2. Направление магнитных индукционных линий |
Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.
Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.
Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.
Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).
Рисунок 3. Условное обозначение направления тока в проводниках
Определение направления вектора магнитной индукции с помощью правила буравчика
В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.
Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:
- Магнитной индукции;
- Величины и направления индукционного тока;
- Угловой скорости.
Такое понимание было сформулировано в правиле буравчика.
Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.
Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.
Физический смысл
С научной точки зрения данное явление можно объяснить таким образом. В основе любого металла лежит кристаллическая решётка. В этой кристаллической решётке содержатся отрицательно заряженные частицы – электроны. В ситуации, когда на проводник не оказывается никакого внешнего магнитного воздействия, заряженные частицы находятся в состоянии полного покоя.
Но в ситуации, когда проводник подпадает под воздействие магнитного поля переменной направленности, эти частицы приходят в движение. Прибор для создания магнитного поля и наблюдения явления индукции в лабораторных условиях состоит из металлической катушки, и перемещающегося в ней постоянного магнита. В результате перемещения внутри металла образуется электроток. Сила возникающего в катушке электротока зависит от нескольких факторов:
- Свойств металла, из которого сделана катушка.
- Свойств магнита, перемещающегося внутри катушки.
- Скорости движения катушки и магнита относительно друг друга.
В результате воздействия силового поля магнита на кристаллическую решётку катушки, электроны, содержащиеся в ней, разворачиваются на определённый угол, выстраиваясь вдоль направления силовых линий поля.
И чем сильнее магнитное воздействие, тем большее число электронов внутри металла поворачиваются, однороднее становится их положение в кристаллической решётке. При этом магнитные поля отдельных частиц не нейтрализуют друг друга, а наоборот, усиливают и формируют единое магнитное поле.
Кратные и дольные единицы тесла:
Кратные и дольные единицы образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
101 Тл | декатесла | даТл | daT | 10−1 Тл | децитесла | дТл | dT |
102 Тл | гектотесла | гТл | hT | 10−2 Тл | сантитесла | сТл | cT |
103 Тл | килотесла | кТл | kT | 10−3 Тл | миллитесла | мТл | mT |
106 Тл | мегатесла | МТл | MT | 10−6 Тл | микротесла | мкТл | µT |
109 Тл | гигатесла | ГТл | GT | 10−9 Тл | нанотесла | нТл | nT |
1012 Тл | тератесла | ТТл | TT | 10−12 Тл | пикотесла | пТл | pT |
1015 Тл | петатесла | ПТл | PT | 10−15 Тл | фемтотесла | фТл | fT |
1018 Тл | эксатесла | ЭТл | ET | 10−18 Тл | аттотесла | аТл | aT |
1021 Тл | зеттатесла | ЗТл | ZT | 10−21 Тл | зептотесла | зТл | zT |
1024 Тл | иоттатесла | ИТл | YT | 10−24 Тл | иоктотесла | иТл | yT |
Единица — магнитная индукция
Единица магнитной индукции в абсолютной системе единиц будет приведена ниже.
Единица магнитной индукции В — тесла ( тл); это индукция такого равномерного магнитного поля, в котором магнитный поток через площадь 1 м2, перпендикулярную направлению поля, равен I вб.
Единица магнитной индукции гаусс ( Гс) не принадлежит к СИ и с 1980 г. не допускается к применению.
Единица магнитной индукции гаусс ( Гс) не допускается к применению.
Единица магнитной индукции тесла ( Т) — индукция такого поля, в котором каждый метр проводника с током один ампер, расположенного перпендикулярно направлению вектора индукции, испытывает силу один ньютон.
Единица магнитной индукции тесла ( Тл) — индукция такого поля, в котором каждый метр проводника с током один ампер, расположенного перпендикулярно направлению вектора индукции, испытывает силу один ньютон.
Единицу магнитной индукции можно было ввести из закона Био — Савара — Лапласа или из выражения для силы Лоренца.
Единицей магнитной индукции является такая магнитная индукция, при которой через площадь 1 м проходит магнитный поток в 1 вб.
Единицей магнитной индукции являетвя тесла ( Т) — магнитная индукция такого однородного магнитного поля, которое дейвтвует е силой в 1 Н на каждый метр длины прямолинейного проводника в током в 1 А, расположенного перпендикулярно направлению поля.
Эта единица магнитной индукции называется тесла.
За единицу магнитной индукции в СИ принята тесла ( Т), равная индукции однородного магнитного поля, действующего с силой 1 Н на каждый метр длины прямолинейного проводника с током 1 А, если проводник расположен перпендикулярно направлению поля.
За единицу магнитной индукции в СИ, называемой тесла ( тл), принимается магнитная индукция такого однородного магнитного поля, которое действует с силой в I н на каждый метр длины прямолинейного проводника с током в I а, если проводник расположен перпендикулярно к направлению поля.
Приняв за единицу магнитной индукции ее амплитудное значение Bs, можно выразить относительную величину амплитуды переменной составляющей магнитной индукции 5 при заданном токе управления через соответствующее относительное значение выпрямленного тока нагрузки.
СО & М единица магнитной индукции В носит название гаусс. Гаусс по величине и размерности совпадает с эрстедом.
Эталон обеспечивает воспроизведение единицы магнитной индукции в диапазоне 5 — 10 5 — 5 — 1О 4 Тл со средним квадратическим отклонением ( СКО) результата измерений не более 10 6 при десяти независимых наблюдениях. Размер единицы передается рабочим средством измерений в диапазоне 5 — Ю 12 — 5 — Ю 2 Тл в соответствии с ГОСТ 8.095 — 81 при помощи вторичных эталонов и образцов основанных на методах квантовой магнитометрии — ядерном магнитном резонансе. Эталон представляет собой электромагнит со стабилизатором поля на основе протонного резонанса и эталонный тесламетр ЯМР.
Сила Лоренца[править]
Как было сказано выше, магнитное поле действует не только на проводник с током, но и на движущийся заряд.
Сила Лоренца-это сила с которой магнитное поле действует на движущийся заряд.Fл=|q|υBsinα
где q- величина заряда, υ-его скорость, B- индукция магнитного поля, α-угол между магнитной индукцией и направлением скорости.
Направление СИЛЫ ЛОРЕНЦА можно определить по
ПРАВИЛУ ЛЕВОЙ РУКИ: если расположить ладонь левой руки так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца были направленны по направлению движения положительного заряда (если дан отрицательный заряд, то берем соответственно в противоположную сторону) то отогнутый на 90° большой палец покажет направление действия силы Лоренца.
Магнитная индукция
Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.
Рисунок 6. К закону Био и Савара |
Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:
где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.
В абсолютной практической рационализованной системе единиц МКСА
где µ – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:
µ = 4 × π × 10-7 (генри/метр);
генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.
µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.
Размерность магнитной индукции можно найти по формуле
Вольт-секунда иначе называется вебером (вб):
На практике встречается более мелкая единица магнитной индукции – гаусс (гс):
Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:
где а – расстояние от проводника до точки, где определяется магнитная индукция.
Формула и обозначения
Обозначается магнитная индукция латинским символом «В», и определяет силу внешнего влияния, оказываемого магнитным полем на заряженные частицы – в нашем случае электроны, обозначаемые «q», – в некоторой точке. Скорость движения заряженных частиц обозначается буквой «U».
Сама физическая формула магнитной индукции выглядит следующим образом:
Где:
- Fмач– наибольшая сила, воздействующая на проводник.
- L – его длина.
- I – сила тока заряженных частиц в металле.
Единицей индукции в международной системе СИ является «тесла», сокращённо в русском варианте «Тл», в международном – «Т». Это название дано в честь сербского учёного Н. Теслы. В старой метрической системе СГС единица индукции обозначалась в честь германского физика «гаусс»: Гс – среди русскоязычных учёных, и G – в интернациональном варианте.
https://youtube.com/watch?v=_fNQdG4Qy4k
Намагничивание ферромагнетиков
В зависимости от магнитных свойств, то есть способности намагничиваться под действием внешнего магнитного поля, все вещества делятся на несколько классов. Которые характеризуются разной величиной относительной магнитной проницаемости μr и магнитной восприимчивости χ. Большинство веществ являются диамагнетиками (χ = -10-8 … -10-7 и μr < 1) и парамагнетиками (χ = 10-7 … 10-6 и μr > 1), несколько реже встречаются ферромагнетики (χ = 103 … 105 и μr >> 1). Кроме данных классов магнетиков существует ещё несколько классов магнетиков: антиферромагнетики, ферримагнетики и другие, однако их свойства проявляются только при определённых условиях.
Особый интерес в радиоэлектронике ферромагнитные вещества. Основным отличием данного класса веществ является нелинейная зависимость намагничивания, в отличие от пара- и диамагнетиков, имеющих линейную зависимость намагничивания J от напряженности Н магнитного поля.
JН
На данном графике показана основная кривая намагничивания ферромагнетика. Изначально намагниченность J, в отсутствие магнитного поля (Н = 0), равна нулю. По мере возрастания напряженности намагничивание ферромагнетика проходит довольно интенсивно, вследствие того что его магнитная восприимчивость и проницаемость очень велика. Однако по достижении напряженности магнитного поля порядка H ≈ 100 А/м увеличение намагниченности прекращается, так как достигается точка насыщения JНАС. Данное явление называется магнитным насыщением. В данном режиме магнитная проницаемость ферромагнетиков сильно падает и при дальнейшем увеличении напряженности магнитного поля стремится к единице.
Магнитное поле[править]
В отличие от заряда покоящегося, который создает вокруг себя электрическое поле, заряд движущийся создает вокруг себя также магнитное поле .
Экспериментально установлено, что:
|
Магнитное поле создается постоянными магнитами или проводниками, по которым течет постоянный ток. Вектор магнитной индукции B является важнейшей характеристикой магнитного поля. Линии магнитной индукции — это линии, касательные к которым направлены так же, как и вектор В в данной точке. В отличие от силовых линий электростатического поля, линии магнитной индукции замкнуты. Магнитное поле является вихревым. В нем работа при перемещении по замкнутой траектории не равна нулю, а зависит от формы траектории (в отличии от электростатического поля или поля тяжести Земли).
Для магнитных полей справедлив принцип суперпозиции, дадим его определение.
Определение. Принцип суперпозиции. В любой точке поля вектор магнитной индукции результирующего поля равен сумме векторов полей, создаваемых каждой точкой в отдельности: B=B1+B2+…+Bn{\displaystyle B=B_{1}+B_{2}+…+B_{n}}.
Открытие электромагнитной индукции
Практически сразу с момента открытия электрического тока было выявлено, что ток, проходящий по проводнику, создает магнитное поле.
Логично было предположить, что магнитное поле тоже может создать движение электрических зарядов в проводнике. Многие ученые безуспешно бились над этой задачей. Однако, электрические заряды, помещенные в постоянное магнитное поле, никак на него не реагировали.
Открытие было сделано М. Фарадеем 29 августа 1831 года (редкий случай, когда точно известна дата открытия).
Рис. 1. М. Фарадей.
В опыте использовались две катушки – одна создавала магнитное поле, вторая была расположена рядом, так, чтобы сквозь нее проходили магнитные линии первой катушки. Вторая катушка была подключена к гальванометру, который был предназначен для определения возникающего в ней электрического тока.
Рис. 2. Опыт Фарадея с двумя катушками.
Опыт давал отрицательный результат, постоянное поле, пронизывающее вторую катушку, не создавало в ней электрического тока, сколько бы времени не прошло. Но, Фарадей заметил, что перед самым опытом, в момент пуска электрического тока через первую катушку, стрелка гальванометра давала слабое колебание
Порядок опыта был перестроен – теперь главное внимание было уделено моменту включения. И выяснилось, что включение и выключение тока через первую катушку вызывает возникновение импульса тока во второй катушке
В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит.
Причем, возникающий ток (как и любой ток в проводнике) создает свое магнитное поле, а направлен он так, чтобы возникающее магнитное поле препятствовало причине, создавшей ток в контуре. Данное правило было позже открыто русским физиком Э.Ленцем.
Многие исследователи, разрабатывавшие теорию электричества, такие, как Х.Эрстед, Ж.Колладон, Дж.Генри, были близки к открытию. Но колебание стрелки в момент запуска или выключения установки они либо вообще не замечали, либо расценивали, как результат случайных внешних сотрясений и не придавали ему значения.
Правило правой руки
Определение направления тока движущемся в магнитном поле проводника (одной стороны замкнутого витка проводников) наглядно демонстрирует правило правой руки.
Оно говорит о том, что правая ладонь, повернутая к полюсу N (силовые линии входят в ладонь), а большой палец, отклоненный на 90 градусов показывает направление движения проводника, то в замкнутом контуре (витке) магнитное поле индуцирует электрический ток, вектор движения которого указывают четыре пальца.
Это правило демонстрирует как изначально появились генераторы постоянного тока. Некая сила природы (вода, ветер) вращала замкнутый контур проводников в магнитном поле вырабатывая электроэнергию. Затем двигатели, получив электрический ток в постоянном магнитном поле преобразовывали его в механическое движение.
Правило правой руки справедливо и в случае катушек индуктивности. Движение внутри них магнитного сердечника приводит к появлению индукционных токов.
Правила буравчика и правой руки удачно демонстрируют взаимодействие электрического и магнитного полей. Они делают доступным понимание работы различных устройств в электротехнике практически всем, а не только ученым.
Как связана индукция и напряженность магнитного поля?
Магнетиком называется вещество, которое под действием магнитного поля способно намагничиваться (или как говорят физики приобретать магнитный момент). Магнетиками являются практически все вещества. Намагничивание веществ объясняется тем, что в веществах присутствуют свои собственные микроскопические магнитные поля, которые создаются вращением электронов по своим орбитам. Когда внешнее магнитное поле отсутствует, то микроскопические поля расположены произвольным образом, а под воздействием внешнего магнитного поля соответствующим образом ориентируются.
Для характеристики намагничивания различных веществ используют так называемый вектор намагничивания J.
Таким образом, под действием внешнего магнитного поля с магнитной индукцией В, магнетик намагничивается и создает свое магнитное поле с магнитной индукцией В’. В итоге общая индукция В будет состоять из двух слагаемых
Тут возникает проблема вычисления магнитной индукции намагниченного вещества В’, для решения которой необходимо считать электронные микротоки всего вещества, что практически нереально.
Альтернативой данного решения есть ввод вспомогательных параметров, а именно напряженность магнитного поля Н и магнитная восприимчивость χ. Напряженность связывает магнитную индукцию В и намагничивание вещества J следующим выражением
где В – магнитная индукция,
μ – магнитная постоянная, μ = 4π*10-7 Гн/м.
В то же время вектор намагничивания J связан с напряженность магнитного поля В параметром, характеризующим магнитные свойства вещества и называемым магнитной восприимчивостью χ
где J – вектор намагничивания вещества,
μr – относительная магнитная проницаемость вещества.
Однако наиболее часто для характеристики магнитных свойств веществ используют относительную магнитную проницаемость μr.
Таким образом, связь между напряженностью и магнитной индукцией будет иметь следующий вид
где μ – магнитная постоянная, μ = 4π*10-7 Гн/м,
μr – относительная магнитная проницаемость вещества.
Так как намагничивание вакуума равна нулю (J = 0), то напряженность магнитного поля в вакууме будет равна
Отсюда можно вывести выражения напряженности для магнитного поля, создаваемого прямым проводом с током:
где I – ток протекающий по проводнику,
b – расстояние от центра провода до точки, в которой считается напряженность магнитного поля.
Как видно из данного выражения единицей измерения напряженности является ампер на метр (А/м) или эрстед (Э)
Таким образом, магнитная индукция В и напряженность Н являются основными характеристиками магнитного поля, а магнитная проницаемость μr – магнитной характеристикой вещества.