Схемы соединения электрической цепи

Что такое атмосферное электричество

Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.

Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.

На фото рабочий образец тороидального генератора Стивена Марка

Способы

Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.

Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.

Получение переменного тока

Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:

  • W — угловая скорость вращения рамки, рад/с;
  • T — время, прошедшее с начального момента, когда вектор скорости был параллелен силовым линиям, с.

То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.

 Описанный простейший генератор можно усовершенствовать:

  1. постоянный магнит меняют на электрический, размещая в статоре несколько катушек (обмотка возбуждения). В итоге получают равномерное магнитное поле и тем самым добиваются идеальной синусоидальности ЭДС (повышается качество работы приборов). Обмотку возбуждения питает маломощный генератор постоянного тока либо аккумулятор;
  2. вместо одной рамки размещают на роторе несколько: ЭДС кратно увеличивается. То есть ротор также представляет собой обмотку.

Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.

Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.

Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.

В генераторах тепловых и атомных электростанций так и происходит. Но в гидроэлектростанциях вращать ротор с такой скоростью невозможно физически: движителем служит падающая вода, а ее скорость намного меньше скорости перегретого пара с давлением в 500 атм.

Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.

Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.

В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.

Примеры применения инверторов:

  • импульсные блоки питания и инверторные сварочные аппараты. Сетевой ток с частотой 50 Гц выпрямляется и затем подается на инвертор, дающий на выходе переменный ток с частотой 60-80 кГц. Назначение: при столь высокой частоте резко уменьшаются габариты трансформатора и потери в нем, то есть устройство в целом становится более компактным и экономичным;
  • автономные дизельные и бензиновые генераторы для питания оборудования, чувствительного к качеству напряжения. Дизель-генератор в чистом виде дает низкокачественный ток, поскольку при преобразовании нагрузки частота вращения вала у него меняется. Инвертор устраняет все эти колебания и дает на выходе стабильное, качественное напряжение;
  • ЛЭП на постоянном токе.

Передавать особенно значительные мощности на сверхбольшие расстояния по ряду причин выгоднее постоянным током, а не переменным. В конечной точке его преобразуют инвертором в переменный промышленной частоты и отправляют в местную энергосистему.

Некоторые виды химических источников тока

Гальванические элементы

Основная статья: Гальванический элемент

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

См. также Категория: Гальванические элементы.
ТипКатодЭлектролитАнодНапряжение,В
Литий-железо-дисульфидный элементFeS2Li1,50 — 3,50
Марганцево-цинковый элементMnO2KOHZn1,56
Марганцево-оловянный элементMnO2KOHSn1,65
Марганцево-магниевый элементMnO2MgBr2Mg2,00
Свинцово-цинковый элементPbO2H2SO4Zn2,55
Свинцово-кадмиевый элементPbO2H2SO4Cd2,42
Свинцово-хлорный элементPbO2HClO4Pb1,92
Ртутно-цинковый элементHgOKOHZn1,36
Ртутно-кадмиевый элементHgO2KOHCd1,92
Окисно-ртутно-оловянный элементHgO2KOHSn1,30
Хром-цинковый элементK2Cr2O7H2SO4Zn1,8 — 1,9

Другие типы:

  • Свинцово-плавиковый элемент
  • Медно-окисный гальванический элемент
  • Висмутисто-магниевый элемент
  • Ртутно-висмутисто-индиевый элемент
  • Литий-хромсеребряный элемент
  • Литий-висмутатный элемент
  • Литий-окисномедный элемент
  • Литий-йодсвинцовый элемент
  • Литий-йодный элемент
  • Литий-тионилхлоридный элемент
  • Литий-оксидванадиевый элемент
  • Литий-фторомедный элемент
  • Литий-двуокисносерный элемент
  • Диоксисульфатно-ртутный элемент
  • Серно-магниевый элемент
  • Хлористосвинцово-магниевый элемент
  • Хлорсеребряно-магниевый элемент
  • Хлористомедно-магниевый элемент
  • Иодатно-цинковый элемент
  • Магний-перхлоратный элемент
  • Магний-м-ДНБ элемент
  • Цинк-хлоросеребряный элемент
  • Хлор-серебряный элемент
  • Бром-серебряный элемент
  • Йод-серебряный элемент
  • Магний-ванадиевый элемент
  • Кальций-хроматный элемент

Электрические аккумуляторы

Основная статья: Электрический аккумулятор

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

См. также Категория: Аккумуляторы.
  • Железо-воздушный аккумулятор
  • Железо-никелевый аккумулятор
  • Лантан-фторидный аккумулятор
  • Литий-железо-сульфидный аккумулятор[источник не указан 549 дней]
  • Литий-ионный аккумулятор
  • Литий-полимерный аккумулятор
  • Литий-фторный аккумулятор
  • Литий-хлорный аккумулятор
  • Литий-серный аккумулятор
  • Марганцево-оловянный элемент
  • Натрий-никель-хлоридный аккумулятор
  • Натрий-серный аккумулятор
  • Никель-кадмиевый аккумулятор
  • Никель-металл-гидридный аккумулятор
  • Никель-цинковый аккумулятор
  • Свинцово-водородный аккумулятор
  • Свинцово-кислотный аккумулятор
  • Серебряно-кадмиевый аккумулятор
  • Серебряно-цинковый аккумулятор
  • Цинк-бромный аккумулятор
  • Цинк-воздушный аккумулятор
  • Цинк-хлорный аккумулятор

Топливные элементы

Основная статья: Топливный элемент

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

См. также Категория: Топливные элементы.
  • Прямой метанольный топливный элемент.
  • Твердооксидный топливный элемент.
  • Щелочной топливный элемент.

Современные химические источники тока. Гальванические элементы, аккумуляторы, конденсаторы

Введение

Химические источники тока (ХИТ) являются неотъемлемой и важной частью огромного числа объектов и элементов техники. Они находят широкое применение в автомобильном, напольном (электрокары, электропогрузчики), водном, авиационном, морском и железнодорожном транспорте, входят в состав энергосистем атомных, тепловых и гидроэлектростанций, обеспечивают работу систем связи, телефонных станций и мобильных телефонов, работают совместно с солнечными, ветровыми и приливными генераторами, широко используются в различных приборах, инструментах и оборудовании, в бытовой, медицинской и военной технике

Аккумуляторные батареи можно встретить в космосе в составе космических станций и ракет, в самых глубоких морских впадинах на подводных аппаратах и глубоко под землей. Диапазон емкости аккумуляторов распространяется от 10-9 до 2*104 Ач. Они могут быть размером от 10-9 до 1 м3 . Отдельные аккумуляторы собираются в батареи, создавая системы с мегаваттной мощностью. Если одновременно включить все существующие химические источники тока, то их мощность превысит мощность всех тепловых и гидроэлектростанций.

Большую роль ХИТ играют в фото- и кинотехнике. Они используются в кино- и видеокамерах, фотоаппаратах, переносных видеомагнитофонах, системах связи, осветительном оборудовании для подводных съемок, различных транспортных средствах, применяемых на съемках,и т.п.

Широкое применение ХИТ в фото- и кинотехнике, а также в системах и оборудовании,обслуживающих процессы кино- и фотосъемок, требует от специалистов умения обоснованно выбирать необходимый источник тока и правильно его эксплуатировать. Для этого нужно иметь представление о работе ХИТ, специфике отдельных электрохимических систем, на базе которых созданы источники. тока. Это позволит максимально эффективно и экономично использовать источники тока.

Первый химический источник тока был открыт случайно. Итальянский ученый Л. Гальвани, проводя опыты с использованием лягушек, заметил, что одна из них, подвешенная на балконе за медный крючок, при соприкосновении с железным ограждением балкона, начинала дергаться. Было введено понятие «животное» электричество. Позже другой итальянский ученый А. Вольта доказал, что причиной появления электрического тока в опыте с лягушкой является не «животное» электричество, а физико-химические процессы, происходящие при погружении двух различных металлов в электролит. Лягушка оказались лишь чувствительным прибором для обнаружения электричества. В 1800 г. Вольта продемонстрировал первый химический источник тока, собранный путем чередования медных и цинковых кружков, проложенных картоном, смоченным электролитом.

Но был ли это действительно первый ХИТ? В 1936 г. на территории Ирака археолог Кенинг нашел терракотовый сосуд со вставленными в него медным цилиндром и железным стержнем, укрепленным по центру с помощью пробки. Было высказано предположение, что это гальванический элемент, принадлежавший древним шумерам, жившим на планете еще 5000 лет назад. Ученый-археолог предположил, что сосуд заливался каким-либо доступным в те времена электролитом: уксусом, фруктовым соком, морской водой. Найденный сосуд наполнили электролитом и получили электрический ток. Правда, удельная энергия такого гальванического элемента составляла всего 1 Втч/кг. Зачем был нужен шумерам гальванический элемент? Недалеко от найденного сосуда были обнаружены серебряные украшения с тонкой позолотой. Вручную нанести такой тонкий слой золота невозможно. Таким образом, возникла гипотеза о гальваническом нанесении золота с использованием химического источника тока.

Развитие ХИТ шло быстрыми темпами, что определялось большой потребностью в них. Первая свинцово-кислотная батарея была изготовлена Планте в 1859 г., а уже в 1881 r. был испытан первый электромобиль с такой батареей. В 1900 г. Юнгером был изобретен никель-железный аккумулятор, а в 1901 г. Эдисоном — никель-кадмиевый.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, который остается необъяснимым до сих пор. Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.

В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного тока, например, аккумуляторной или химической батареи, проводников и нагрузки. В качестве нагрузки может выступать материал с электрическим сопротивлением, гораздо большим, нежели сопротивление проводников, замыкающих электрическую цепь. Это может быть лампочка с вольфрамовой спиралью или реостат из нихромовой проволоки или любая другая нагрузка, сопротивление которой имеет значение, отличное от нуля.

Получают постоянный ток различными способами. Самый древний из них – химический, основанный на возникновении разницы потенциалов между проводниками из разных материалов, помещенных в кислотную или щелочную среду. Химические батареи и аккумуляторы используются людьми не одно тысячелетие и сегодня они в ходу, только в очень усовершенствованном виде по сравнению со своими древними предками. Более современные источники постоянного тока – фотоэлементы, позволяющие получать разницу потенциалов при облучении их Солнцем и генераторы постоянного тока, которые приводят в действие при помощи механической энергии, прилагаемой снаружи. Сегодня генераторы постоянного тока наиболее распространены в ветроустановках с преобразователем напряжения.

Постоянный ток движет поезда на железной дороге. Электрифицированные участки сегодня составляют значительную величину по протяженности в нашей стране. Постоянный ток применяют и для передачи на большие расстояния значительных мощностей электрической энергии при сверхвысоких потенциалах.

При всей широте применения постоянного тока имеются значительные ограничения, которые препятствуют использованию его в повседневной деятельности для питания бытовых приборов и промышленных установок. Связано это с большими потерями на омическое сопротивление в проводниках, что сказывается самым негативным образом на работе осветительного и прочего оборудования. Для того чтобы снизить потери, необходимо применять проводники большего сечения, причем, альтернативы меди здесь практически нет. А медные провода весьма дороги.

Это препятствие заставило ученых искать иные способы получения и передачи электроэнергии на любые расстояния практически без потерь. Ныне в этой области человеческой деятельности главную роль играет переменный ток.

Какими должны быть розетки

Размеры розеток, их тип, материал, из которого они изготовлены, зависят в первую очередь от назначения розеток, токов и напряжений, на которые они рассчитаны. Устройства, работающие при постоянном напряжении, имеют полярные вилки. Поэтому и розетки для них должны быть полярными. Тогда даже неопытный пользователь не сможет перепутать, где «+» и «–».

Переменный ток в цепи представляет собой электрический поток заряженных частиц, направление и скорость которых периодически изменяется во времени по определенному закону.

Инструкция

Обратитесь к общему понятию переменного тока в электрической цепи, описанному в школьном учебнике. Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Это означает, что величина силы тока в сети переменного тока изменяется по закону синуса или косинуса. Собственно говоря, это отвечает тому току, что течет в бытовой электрической сети. Однако синусоидальность тока не является общим определением переменного тока и не до конца объясняет природу его протекания.

Нарисуйте на листе бумаги график синусоиды. По данному графику видно, что значение самой функции, выражаемой силой тока в данном контексте, изменяется от положительного значения к отрицательному. Причем время, через которое происходит смена знака, всегда одно и то же. Это время называется периодом колебаний тока, а обратная ко времени величина – частотой переменного тока. Например, частота переменного тока бытовой сети составляет 50 Гц.

Обратите внимание на то, что обозначает смена знака функции физически. На самом деле, это означает лишь то, что в какой-то момент времени ток начинает течь в противоположную сторону

Причем, если закон изменения синусоидальный, то смена направления движения происходит не скачком, а с постепенным торможением. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Как известно, направление тока задается направлением положительно заряженных частиц в цепи. Таким образом, в цепи переменного тока заряженные частицы через определенное время изменяют направление своего движения на противоположное.

Сам по себе электрический ток представляет собой ничто иное, как происходящее в упорядоченном виде движение всех заряженных частиц в газах, электролитах и металлических объектах. К данным элементам, несущим определенный заряд, относятся ионы и электроны. Сегодня мы постараемся прояснить, чем отличается переменный ток от постоянного
, ведь на практике приходится часто сталкиваться с обоими видами.

Оцените статью:
Оставить комментарий
Adblock
detector