Индукция магнитного поля. вихревое поле. соленоид. электромагниты

Влияние числа витков и способа намотки

Катушка индуктивности – это спираль, созданная из проводящего материала. Рабочие параметры изделий будут зависеть от особенностей конструкции. Индуктивность увеличивают:

  • большим количеством витков на единицу длины;
  • укрупнением поперечного сечения;
  • установкой в центральной части сердечника с ферромагнитными характеристиками.

От чего зависит индуктивность катушки, примеры типовых решений

Индуктивность одновиткового контура и индуктивность катушки

Для расчета элементарной конструкции подойдет преобразованная первая формула:

Ф = L * I.

Если рассматривается катушка, это выражение трансформируют в суммарное выражение магнитных потоков (Ψ), образованных отдельными витками:

Ψ = n * Ф.

Аналогичным образом:

Ln = L1 * n.

В действительности для точных расчетов учитывают различия силовых линий в центральной части и на краях конструкции. Для коррекции применяют более сложные выражения.

Индуктивность соленоида

Достаточно длинная электрическая катушка формирует внутри параллельные силовые линии. Для создания равномерного распределения энергии необходимо применять проводник с толщиной намного меньше, по сравнению с диаметром поперечного сечения. Разумеется, необходимо установить одинаковое расстояние между отдельными витками.

Такую конструкцию называют соленоидом. Плотность магнитного потока (B) в центральной рабочей части будет зависеть прямо пропорционально от длины (l) и следующих параметров:

  • количества витков (N);
  • тока (i);
  • плотности намотки (n – число контуров на единицу длины);
  • площади поперечного сечения (S);
  • объема (V = S * l).

Ниже приведены основные формулы для вычислений при отсутствии сердечника с учетом магнитной постоянной (m ≈ 1,257 *10-6 Гн/ м):

  • В = m0 * N * (i/l) = m0 * n * I;
  • Ψ = m0 * N2 * (I * S/l) = m0 * n2 * i *V;
  • L = m0 * N2 * (S/l) = m0 * n2 * V.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для вычисления индукции катушки с сердечником в представленные выше формулы добавляют корректирующий множитель «m». С учетом особой формы изделия необходимо сделать следующие изменения:

L = N2 * ((m0 * m * S)/2π * rL), либо L = N2 * ((m0 * m * h)/2π) * ln(R/r),

где:

  • 2π * rL – длина рабочего элемента со средним радиусом rL;
  • R (r) и h – наружный (внутренний) радиус и высота тора, соответственно.

Коэффициентом «m» учитывают относительный показатель магнитной проницаемости определенного материала к значению для нейтральной среды (вакуума). Если m намного больше единицы, допускается не учитывать искажения поля, которые создает толстый проводник.

Электромагниты.

Соленоид с железным сердечником внутри называется электромагнитом.

Электромагниты могут содержать не одну, а несколько катушек (обмоток) и иметь при этом разные по форме сердечники.

Подобный электромагнит впервые был сконструирован английским изобретателем У. Стердженом в 1825 г. При массе 0,2 кг электромагнит У. Стерджена удерживал груз весом 36 Н. В том же году Дж. Джоуль увеличил подъемную силу электромагнита до 200 Н, а через шесть лет американский ученый Дж. Генри построил электромагнит массой 300 кг, способный удерживать груз массой 1 т!

Современные электромагниты могут поднимать грузы массой несколько десятков тонн. Они используются на заводах при перемещении тяжелых изделий из чугуна и стали. Электромагниты используются также в сельском хозяйстве для очистки зерен ряда растений от сорняков и в дру­гих отраслях промышленности.

Что такое индуктивность

Этим термином обозначают зависимость, которая устанавливается между силой тока в проводнике (I) и созданным магнитным потоком (Ф):

L = Ф/ I.

С учетом базового определения несложно понять зависимость индуктивности от свойств окружающей среды, оказывающей влияние на распределение силовых линий. Определенное значение имеют размеры и конфигурация проводящего элемента.

Индуктивность подобна механической инерции. Только в данном случае речь идет о действиях с электрическими величинами. Этим коэффициентом характеризуют способность рассматриваемого компонента противодействовать изменению проходящего через него тока.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.

Устройство электромагнитного клапана.

Обозначение и единицы измерения

В системе единиц СИ индуктивность измеряется в генри, сокращённо «Гн». Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 109 см; 1 см = 1 нГн); для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552 × 1011 генри: коэффициент перевода численно равен 10−9 от квадрата скорости света, выраженной в см/с).

Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

Определения и формулы

Соленоид представляет собой намотанную виток к витку катушку, длина которой значительно больше ее диаметра. Если через катушку соленоида протекает электрический ток, в ней образуется однородное магнитное поле. Соленоиды с ферромагнитными сердечниками часто используются в качестве исполнительных механизмов для преобразования электрической энергии в линейное перемещение сердечника. Самым привычным примером такого соленоида является реле стартера, которое выполняет две функции: подает напряжение на двигатель стартера и вводит шестерню двигателя стартера в зацепление с маховиком коленвала двигателя на время запуска.

Модуль магнитной индукции B длинного соленоида в воздухе без сердечника рассчитывается по формуле

где μ₀=4π × 10−7 Гн/м — магнитная постоянная, N число витков катушки соленоида, I протекающий через катушку ток и L — длина соленоида.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.

Магнитное поле, создаваемое внутри.

Соленоиды и ферромагнитные жидкости

Соленоидные исполнительные механизмы — довольно шумные устройства, поэтому иногда в зазор между сердечником и каркасом катушки вводят ферромагнитную жидкость. Она уменьшает или даже полностью устраняет шум при срабатывании соленоида, а также увеличивает силу притяжения, что позволяет уменьшить размеры соленоидных исполнительных устройств при сохранении их характеристик. Ферромагнитные жидкости также позволяют уменьшить утечку магнитного поля в магнитопроводе, а также улучшают охлаждение соленоида.

Еще одно применение ферромагнитных жидкостей в соленоидах — в качестве эластичного сердечника. Это позволяет изготовить эластичные соленоиды, которые можно использовать в современных гибких электронных устройствах, например, в носимых компьютерах и устройствах биомедицинского контроля.

Общие сведения

Синий и зеленый лазерные лучи хорошо видны через коллоидную смесь благодаря эффекту Тиндаля

В этой статье поговорим о занимательных и необычных ферромагнитных жидкостях. Если их намагнитить, воздействуя на них магнитным полем, то эти жидкости формируют интересные складки на поверхности. Ферромагнитные жидкости — это коллоидные системы, состоящие из наночастиц размером около 10 нм, распределенных во взвешенном состоянии в воде или в другой жидкости-носителе. Большая часть этих жидкостей-носителей — органические растворители, то есть такие жидкости, в которых можно растворить другое вещество. Коллоидные вещества — это жидкости, представляющие собой смеси жидкости-носителя и частиц другого вещества. Обычно эти частицы не опускаются на дно в виде осадка, и это делает коллоидное вещество довольно однородным. Это свойство особенно относится к ферромагнитным жидкостям. Вдобавок к естественным свойствам частиц оставаться взвешенными в ферромагнитной жидкости, эти частицы покрыты особым веществом, называемым
поверхностно-активным веществом, которое предотвращает слипание частиц, и помогает ферромагнитной жидкости оставаться жидкостью.

Пронаблюдать ван-дер-ваальсовы силы в действии можно, когда гекконы, ящерицы анолисы, сцинковые и некоторые насекомые перемещаются по вертикальным поверхностям стен, или даже по потолку

Зеленая ящерица анолис

Молекулы поверхностно-активного вещества присоединяются к наночастицам и окружают каждую частицу, создавая, таким образом, буфер вокруг частицы. Притяжение между наночастицами регулируется
ван-дер-ваальсовыми силами, которые ослабевают при увеличении расстояния между этими частицами. Поэтому, когда расстояние между наночастицами увеличивается благодаря поверхностно-активному веществу, притяжение между этими частицами ослабевает.

Магнетит

В некоторых случаях поверхностно-активные вещества работают по-другому. Их молекулы присоединяются к наночастице так, что их наружная полярность одинакова по всей наружной поверхности (например, наружная оболочка приобретает положительный заряд). Таким образом, вокруг каждой наночастицы образуется оболочка с определенным зарядом. Так как оболочки всех наночастиц заряжены одинаково, они отталкивают друг друга, потому что одинаковые заряды отталкиваются. Это и предотвращает слипание.

Магнетит, как естественный магнит

Мы немного поговорили о жидкостях-носителях. Но из чего же состоят сами наночастицы? Иногда для этого используют частицы магнетита — минерала с магнитными свойствами. Магнетит — минерал, встречающийся в природе, который легко намагнитить. Стоит заметить, что в некоторых особых случаях магнетит имеет свойства постоянного магнита, то есть в обычных условиях его магнитные свойства постоянны и неизменны. Частицы магнетита в ферромагнитных жидкостях не являются постоянным магнитом, то есть их можно намагнитить с помощью магнитного поля, но это намагничивание пропадает, как только магнитное поле перестает на них действовать. Также для изготовления ферромагнитных жидкостей используют высокодисперсные порошки металлов, обладающих магнитными свойствами и некоторые ферримагнитные материалы.

Оцените статью:
Оставить комментарий