Энергия магнитного поля тока. электромагнитное поле. физика. 11 класс

Правило Ленца и индуктивность

Электрический ток создает магнитное поле – это была сенсация в девятнадцатом веке. Электрические и магнитные явления представлялись в прошлом совершенно разными явлениями, и открытие связи между ними вызвало горячий интерес исследователей. Магнитное поле казалось многоликим, присущим совершенно разным объектам – куску магнитной руды, Земному шару и… проводу с током. Сейчас известно, что в каждом из этих объектов магнитное поле порождается движением электрического заряда.

В современной науке установлена общая природа электрического и магнитного полей. При изучении постоянного тока был сделан первый шаг к пониманию этой истины – открыта связь между  током и магнитным полем, между силой тока и силой создаваемого им магнитного поля.

Символ L, которым обозначается индуктивность, выбран в честь физика Эмиля Ленца. Он изучал магнитные явления, возникающие при протекании электрического тока. Сила Ленца – это сила, действующая на проводник с током, помещенный в магнитное поле.

Ленц также наблюдал, как катушки из электрических проводов, по которым пропускался ток, притягивались или отталкивались, подобно постоянным магнитам. Притяжение или отталкивание? Это определялось направлением тока в витках, взаимным расположением катушек. А сила взаимодействия определялась количеством витков и силой тока. При одинаковом токе, катушка с большим числом витков создавала большее магнитное поле.

Стиральная машина и индуктивное сопротивление

Пользователи автоматических стиральных машин часто жалуются на то, что ток «пробивает на барабан».  Электрическая изоляция таких машин, как правило, в полном порядке, но все равно есть неприятное ощущение от прикосновения к металлическому барабану, при загрузке и выгрузке вещей.

Причина – в наведенном токе. Машина-автомат имеет блок питания, в котором сетевое напряжение преобразуется в высокочастотное.  Это высокочастотное напряжение наводится на все электропроводящие предметы, в частности на металлический барабан. Индуктивность барабана не нормируется, но наверняка она мала. Тем не менее, ток высокой частоты электронной схемы индуцирует на металлических частях стиральной машины отклик – небольшой ток.

Подобное явление иногда наблюдают пользователи современных водонагревателей с электронным управлением, греющих водопроводную воду.  Если блок питания в устройстве  оказывается близко к трубе с водой, на ней может наводиться переменный высокочастотный ток,  и вода из крана «щиплется». Избежать неприятных ощущений можно, отключив электрическое напряжение от котла.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Измерение плотности энергии магнитных полей

Данная величина показывает энергию, содержащуюся в единице объема окружающей среды, подпадающей под влияние поля. Обозначается она греческой буквой ω. Для вычисления применяется формула:

ω=W/V, в данном случае W – это полевая энергия в объеме пространства V.

Единица измерения плотности поля в международной системе СИ тоже выглядит как частное единиц, в которых измеряются эти величины: джоулей и кубических метров (Дж/м3). Показатель для аккумуляторов (ионных, свинцово-кислотных и других) указывают в прилагающейся документации.

Для соленоида, подсоединенного в электрическую цепь, оба составляющих этого частного можно выразить через следующие единицы:

  1. Значение энергетического ресурса поля будет равным уполовиненному произведению индуктивности соленоида на квадрат токовой силы в его обмотке:

W=L*I2/2.

  1. В качестве «пространства» рассматривается сама катушка, тогда V=S*l, где S – площадь сечения катушечного элемента в поперечнике, а l – его длина.

Тогда конечная формула принимает следующий облик:

ω=L*I2/2*S*l.

Хранящаяся в магнитном поле энергия

Для линейных не дисперсионных материалов энергетическая плотность:

Энергетическая плотность – количество энергии, сохранившейся в конкретной системе или области пространства на единицу объема. Если рядом нет магнитных материалов, то μ можно заменить на μ. Для нелинейных материалов нельзя применить указанную формулу. Нужно рассмотреть общее выражение.

Здесь инкрементный объем работы на единицу объема, необходимый для внедрения перемен в магнитное поле, достигает:

δW = H ⋅ δB.

Если мы знаем соотношение H и B, то можем применить уравнение. В случае с гистерезисными материалами (ферромагнетики и сверхпроводники), работа основывается на способе формирования магнитного поля.

Что такое Энергия магнитного поля катушки с током?

Almagul’

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА
Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.
Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Гипотеза Максвелла

А что если подобная же картина происходит при изменении электрического поля?

Гипотеза Максвелла: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля.

Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора. Это переменное электрическое поле порождает магнитное поле в той же области между обкладками конденсатора. Причём, это магнитное поле точно такое же, как будто бы между обкладками конденсатора протекал ток, равный току во всей остальной цепи. В основе теории лежат четыре уравнения Максвелла, из которых следует, что изменение электрического и магнитного полей в пространстве и во времени происходят согласованным образом. Так, электрическое и магнитное поле образуют единое целое. Электромагнитные волны распространяются в пространстве в виде поперечных волн с конечной скоростью.

Указанная взаимосвязь между переменным магнитным и переменным электрическим полем говорит о том, что они не могут существовать обособленно друг от друга. Возникает вопрос: касается ли это утверждение статических полей (электростатического, создаваемого постоянными зарядами, и магнитостатического, создаваемого постоянными токами)? Такая взаимосвязь существует и для статических полей

Но важно понимать, что эти поля могут существовать по отношению к определённой системе отсчёта

Покоящийся заряд создаёт в пространстве электростатическое поле (рис. 2) относительно определённой системы отсчёта. Относительно других систем отсчёта он может двигаться и, следовательно, в этих системах этот же заряд будет создавать магнитное поле.

Рис. 2. Закон Кулона

Электромагнитное поле – это особая форма существования материи, которая создаётся заряжёнными телами и проявляется по действию на заряжённые тела. В ходе этого действия их энергетическое состояние может изменяться, следовательно, электромагнитное поле обладает энергией.

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно! Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​\( \vec{E} \)​ и \( \vec{B} \)​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​\( \lambda=cT=\frac{c}{\nu}, \)​

где ​\( c \)​ – скорость электромагнитной волны, ​\( T \)​ – период, ​\( \nu \)​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·108 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно! Электромагнитная волна в отличие от механической волны может распространяться в вакууме. Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​\( I \)​, единица измерения в СИ – ватт на квадратный метр (Вт/м2).

Важно! Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты. Электромагнитная волна обладает общими для любых волн свойствами, это:

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.
Оцените статью:
Оставить комментарий
Adblock
detector