Мощность электрического тока

Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.

Генератор на электростанции

Генератор на электростанции

Определение

Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:

P = A/t.

В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:

P = U*I.

Это вольтампер (ВА) и производные от нее кВА, мВА.

Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.

В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:

  • активная;
  • реактивная;
  • полная;
  • комплексная.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

P = U*I cos φ,

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Формулы для расчета мощности

Реактивная

Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.

Формула расчета:

Q = U*I sin φ.

Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).

Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:

  1. Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
  2. Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.

Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).

Конденсаторные батареи

Конденсаторные батареи

Полная

Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.

Формула расчета:

S = U*I, результат измеряется в вольтамперах.

Если использовать для расчета активную и реактивную составляющую, то полное мощностное значение определяется извлечением квадратного корня из суммы их квадратов.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.
Цифровой варметр

Цифровой варметр

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.
Фазометр

Фазометр

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Видео

Оцените статью:
Оставить комментарий