Что такое номинальный ток электродвигателя

Вы здесь

Выбор автоматического выключателя

Выбор автоматического выключателя проводят по его основным характеристикам:

Номинальное рабочее напряжение Ue (B) Указанное напряжение означает максимальное
допустимое значение в течении длительного времени.
При меньших напряжениях отдельные характеристики
могут изменяться и даже улучшаться, например,
отключающая способность.
Номинальное напряжение изоляции Ui (кB) Характеризует изоляционные свойства аппарата,
определяется в ходе его испытаний высоким
напряжением (импульсным и промышленной частоты).
Номинальное импульсное
выдерживаемое напряжение Uimp (кВ)
Номинальное импульсное выдерживаемое
напряжение – пиковое значение импульсного
напряжения заданной формы и полярности, которое
может выдержать аппарат без повреждений.
Номинальный ток In (А) Это наибольший ток, который автоматический
выключатель может проводить в продолжительном
режиме при температуре окружающего воздуха 40°С
по стандарту ГОСТ Р 50030.2-99 и 30°С по стандарту
ГОСТ Р 50345-99. При более высоких температурах
значение номинального тока уменьшается.
Номинальная предельная наибольшая
отключающая способность Icu (кА)
Это наибольший ток короткого замыкания, который
автоматический выключатель способен отключить
при данном напряжении и коэффициенте мощности.
Испытания на Icu проводятся по схеме O-t-CO,
где О – отключение, t – выдержка времени,
СО – включение с последующим автоматическим
выключением.
Номинальная наибольшая
отключающая способность Icn
По окончании испытания
автоматический выключатель должен сохранять
свои изоляционные свойства и способность
к отключению в соответствии с требованиями
стандарта.
Отключающая способность

На автоматические выключатели часто наносят
два значения отключающей способности.
Это объясняется тем, что в разных стандартах
используются разные условия испытаний.
10000 : стандарт ГОСТ Р 50345-99 (IEC 60898)
для аппаратов бытового и аналогичного
назначения, где при неквалифицированном
обращении возможно неоднократное
включение неисправной цепи. Наибольшая
отключающая способность (в амперах)
указывается в прямоугольнике без указания
единицы измерения.
10 kA: стандарт ГОСТ Р 50030.2-99
(IEC 60947-2) для всех применений,
где требуется определенная квалификация обслуживающего персонала. В этом случае наибольшая отключающая способность указывается с единицей измерения (кA).

Номинальная рабочая наибольшая
отключающая способность Ics
Это величина, выражаемая в процентах от Icu:
25% (только для категории А), 50%, 75% или 100%.
Автоматический выключатель должен нормально
работать после неоднократного отключения тока Ics
при испытании в последовательности О-СО-СО.
Номинальный кратковременно
выдерживаемый сквозной ток Icw (кА)

Это ток короткого замыкания, который автоматический
выключатель категории В (см. ниже) способен
выдерживать в течение установленного времени
без изменения своих характеристик.
Этот параметр используется для обеспечения
селективности срабатывания аппаратов.
Соответствующий выключатель может оставаться
замкнутым до тех пор пока значение I2 t не превысит
значения Icw2 . Величина Icw – один из наиболее
важных показателей автоматического выключателя.

Значение Icw указывается для тока, действующего
в течение 1 с. Для других длительностей надо
вводить соответствующие обозначения,
например Icw0,2 . При этом необходимо убедиться
в том, что величина I2 t, характеризующая тепловой
нагрев до момента срабатывания расположенного
ниже аппарата защиты, действительно меньше,
чем Icw2 t.

Номинальная наибольшая включающая
способность Icm (кА, пиковое значение)
Это максимальное значение тока, который аппарат
способен удовлетворительно выдерживать в условиях,
оговоренных стандартом.
Аппараты, не имеющие функции защиты (например,
выключатели), должны выдерживать ток короткого
замыкания, значение и длительность которого
определяются параметрами срабатывания
присоединенного аппарата защиты.

Как выбрать

Основные критерии выбора автомата:

  1. Ток короткого замыкания. Выбирается в соответствии с правилами устройства электроустановок, по которым приборы с отключающей способностью менее 6 кА запрещены. В настоящее время используются автоматы с номиналом 3, 6, 10 кА. Для домов, находящихся рядом с трансформаторной станцией, следует выбирать выключатель, срабатывающий при 10 кА.
  2. Рабочий ток. Выбирается с учетом сечения кабеля, материала, мощности потребления энергии. Подобрать нужный прибор можно по таблицам.
  3. Ток срабатывания. При включении устройства начальное значение может быть значительно выше рабочего, и, чтобы автомат не сработал, нужно правильно его выбрать. В дома и квартиры устанавливаются устройства класса B, при наличии мощной плиты или электрокотла лучше брать автоматы класса C. Для частных домов, в которых есть установки с электродвигателями, выбираются выключатели класса D.
  4. Селективность, т.е. отключение при аварийной ситуации только определенного проблемного участка, а не всего электричества в доме.
  5. Количество полюсов.
  6. Фирма-изготовитель. Покупка дешевого аппарата – может не сработать в нужный момент, что приведет к поломке устройств, износу изоляции и возможному пожару.

Автоматический выключатель – устройство, которое жизненно нужно в каждом доме для защиты от токов большой величины. Такие приборы устанавливаются в жилых домах и в производственных помещениях, и помогают обезопасить здание от поломки приборов и возгорания.

Класс токоограничения

Когда появляются сверхтоки, изоляция резко нагревается. При максимальном значении тока автомат разъединяет цепь. За это время изоляция может повредиться, поэтому вводится еще одна характеристика, контролирующая ток.

Класс токоограничения влияет на безопасность всей схемы. Физически это промежуток времени, при котором происходит размыкание контактов и гашение дуги в гасительной камере. Выделяют 3 класса:

  • 3 класс – самый быстрый, время гашения составляет 2,5 мс;
  • 2 класс – время гашения 6-10 мс;
  • 1 класс – время гашения превышает 10 мс.

На устройстве это значение указывается в черном квадрате. 1 класс не обозначается на устройстве.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного автоматического выключателя связана с коэффициентом мощности (cos φ) поврежденного участка цепи. В ряде стандартов приводятся типовые значения такого соотношения.

Отключающая способность автоматического выключателя – максимальный (ожидаемый) ток, который данный автоматический выключатель способен отключить и остаться в работоспособном состоянии. Упоминаемая в стандартах величина тока представляет собой действующее значение периодической составляющей тока замыкания, т.е. при расчете этой стандартной величины предполагается, что апериодическая составляющая тока в переходном процессе (которая всегда присутствует в наихудшем возможном случае короткого замыкания) равна нулю. Эта номинальная величина (Icu) для промышленных автоматических выключателей и (Icn) для бытовых автоматических выключателей обычно указывается в кА.

Icu (номинальная предельная отключающая способность) и Ics (номинальная эксплуатационная отключающая способность) определены в стандарте МЭК 60947-2 вместе с соотношением Ics и Icu для различных категорий использования A (мгновенное отключение) и B (отключение с выдержкой времени), рассмотренных в подразделе Другие характеристики автоматического выключателя.

Проверки для подтверждения номинальных отключающих способностей автоматических выключателей регламентируются стандартами и включают в себя:

  • коммутационные циклы, состоящие из последовательности операций, т.е. включения и отключения при коротком замыкании;
  • фазовый сдвиг между током и напряжением. Когда ток в цепи находится в фазе с напряжением питания (cos φ = 1), отключение тока осуществить легче, чем при любом другом коэффициенте мощности. Гораздо труднее осуществлять отключение тока при низких отстающих величинах cos φ,при этом отключение тока в цепи с нулевым коэффициентом мощности является самым трудным случаем.

На практике все токи короткого замыкания в системах электроснабжения возникают обычно при отстающих коэффициентах мощности, и стандарты основаны на значениях, которые обычно считаются типовыми для большинства силовых систем. В целом, чем больше ток короткого замыкания (при данном напряжении), тем ниже коэффициент мощности цепи короткого замыкания, например, рядом с генераторами или большими трансформаторами.

В таблице, приведенной на рис. H34 и взятой из стандарта МЭК 60947-2, указано соотношение между стандартными величинами cos φ для промышленных автоматических выключателей и их предельной отключающей способностью Icu.

после проведения цикла «отключение – выдержка времени — включение/ отключение» для проверки предельной отключающей способности (Icu) автоматического выключателя выполняются дополнительные испытания, имеющие целью убедиться в том, что в результате проведения этого испытания не ухудшились:

  —  электрическая прочность изоляции;   —  разъединяющая способность;   —  правильное срабатывание защиты от перегрузки.

Icu cosφ
6 kA < Icu ≤ 10 kA 0,5
10 kA < Icu ≤ 20 kA 0,3
20 kA < Icu ≤ 50 kA 0,25
50 kA < Icu 0,2

Рис. H34: Соотношение между Icu и коэффициентом мощности (cos φ) цепи короткого замыкания (МЭК 60947-2)

Как работает автоматический выключатель

Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание

Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей

Поэтому главной функцией автоматического выключателя, является:

  • Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
  • Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.

Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.

Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.

Автоматы «В» и «С» — в чем разница, категории автоматических выключателей

Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.

Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:

А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.

В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.

С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.

Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи. измеряющие ток в цепи без ее разрыва.

При использовании мультиметра (как пользоваться мультиметром? ) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе. перед запуском прибор нужно надежно закоротить. чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя :

Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.

Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВт

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Схема соединения обмоток

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Ток короткого замыкания

Для правильного выбора автомата — в частности, его характеристики срабатывания — нам желательно знать ток короткого замыкания в конце линии, защищаемой этим автоматом. При проектировании токи короткого замыкания рассчитывают, исходя из параметров питающей сети, сечения проводов и т.д. Электрику-практику обычно трудно добыть эти данные, но он может провести некоторые измерения, которые позволят вычислить ток КЗ. Я не призываю это делать обязательно, но покажу, как это можно сделать. По понятным причинам мы не можем просто устроить КЗ и измерить его силу тока. Поэтому будем делать косвенно. Представим питающую сеть в виде некого генератора, обладающего каким-то внутренним сопротивлением. Тогда ток КЗ будет равен ЭДС генератора, деленной на его внутреннее сопротивление. ЭДС генератора считаем равной напряжению сети без нагрузки, его мы легко можем измерить вольтметром.

Рассмотрим левый рисунок. Пусть точки a и b — это розетка, в районе которой мы хотим узнать ток короткого замыкания. G — некий эквивалент генератора, подающего напряжение в сеть, Z1 — его внутреннее сопротивление. Z2 — это включенная в сеть нагрузка, которая при коротком замыкании будет равна нулю. Переходим к правой схеме. В цепь включили амперметр и подключили вольтметр. Для удобства добавили выключатель (рубильник или автомат). Теперь, подключая вместо Z2 разную нагрузку (желательно активную — нагреватели и т.д.), снимаем показания амперметра и вольтметра, после чего рисуем график зависимости напряжения от тока. Для хорошего результата нужно сделать не меньше пяти замеров, причем максимальное значение тока взять как можно больше, чтобы напряжение ощутимо просело. Конечно же, при большом токе у вас может сработать защита по перегрузке, поэтому нужно быстро снять показания и сразу же отключить S1. Осталось только продолжить график до нулевого значения напряжения и узнать ожидаемый ток короткого замыкания. В качестве вольтметра и амперметра можно применить мультиметр и токоизмерительные клещи.

Выбор автомата по мощности (току) нагрузки

Хотя основное назначение автомата — это защита электропроводки, при определенных условиях целесообразно рассчитывать автомат по току нагрузки. Это возможно в тех случаях, когда отходящая от автомата линия предназначена для питания одного конкретного электроприбора. В бытовых сетях это может быть электроплита или кондиционер, какой-либо станок, электрокотел и т.д. Как правило, нам известен номинальный ток электроприбора, либо мы можем вычислить его, зная мощность нагрузки. Так как проводка выбирается с определенным запасом, то в данном случае номинал автомата обычно меньше того, который мы бы получили, рассчитывая по допустимому току провода. Поэтому при каких-либо замыканиях внутри электроприбора или его перегрузках наша защита сработает, защитив его от дальнейшего разрушения.

Как подобрать автомат?

Возьмем классический пример. Делаем ремонт в квартире (или в частном доме), меняем электропроводку и хотим ее защитить от перегрузок и коротких замыканий. Обычная в наши дни практика — разделение проводки на несколько ветвей с защитой каждой из них отдельным автоматом. В квартирах часто разделяют на отдельные линии освещение и розетки. Помимо этого, отдельная линия может быть выделена под электроплиту, еще одна под кухонные розетки и розетки хозблока, в которые обычно включают самые мощные в квартире электроприборы: электрочайник, микроволновая печь, стиральная машина и т.д. Надо заметить, что стандартные электророзетки, применяемые в наших домах, обычно рассчитаны на максимальный ток 10 или 16А, и зачастую являются самым слабым звеном электропроводки. Поэтому и номинал автомата, защищающего линию с такими розетками, не может быть выше 16А, какой бы толстый провод ни был.

О материале и толщине провода — это отдельная тема, здесь лишь скажу кратко: медь и только медь, для квартир и частных домов берем сечение 1.5 кв.мм на освещение, 2.5 кв.мм — на стандартные розетки. Соответственно, номиналы автоматов для линий освещения 10А, для линий, питающих розетки, 16А (при условии, что розетки тоже 16-амперные). При этом возникает ряд вопросов. Получается, что каждая розетка может одна выдержать 16 Ампер, но при этом суммарный ток всей группы розеток также не должен превышать те же самые 16 Ампер.

Некоторым такой расклад не нравится, и они ставят автоматы на больший ток — 25А и даже выше. По некоторым соображениям, этого не стоит делать, даже если сечение провода будет позволять пропускать такой ток длительное время. Представим ситуацию, что в одну из розеток воткнули какой-то мощный электроинструмент, который потребляет ток до 25-30А. Понятно, что при таком токе в розетке могут пойти неприятные процессы, вплоть до возгорания, а 25-амперный автомат этой перегрузки не почувствует. Ну или почувствует, но тогда, когда все уже будет гореть синим пламенем. Кто-то может возразить, что нет стандартного электроинструмента с таким током потребления, но ведь инструмент может быть и нестандартным, и неисправным. А может случиться и такое, что через удлинитель к розетке подключат несколько мощных электроприборов одновременно, с таким же результатом.

Поэтому, если предполагается, что суммарный ток оборудования, одновременно включенного в розетки, будет больше 16А, то правильным решением будет разделить розетки на несколько групп и запитать каждую группу через отдельный автомат. Надо иметь в виду, что в продаже имеются как 16-ти, так и 10-амперные розетки. Я не скажу, что те, которые на 10А, плохого качества — просто они рассчитаны на максимальный ток нагрузки, равный 10 А. Для таких розеток допустимо прокладывать проводку сеченим 1.5 мм2, но и автомат в данном случае должен быть 10-амперный. По поводу удлинителей. Очень часто можно встретить дешевые варианты, сечение шнура такого удлинителя 1 мм2, бывает и меньше. Сами удлинители обычно никакой защиты не имеют

Поэтому используйте такие удлинители с особой осторожностью, понимая то, что автомат их может и не защитить

Зависимость срабатывания от окружающей температуры

Еще один момент, о котором часто забывают — это зависимость тепловой защиты автомата от температуры окружающей среды. А она очень существенная. Когда автомат и защищаемая линия находятся в одном помещении, то обычно ничего страшного: при понижении температуры чувствительность автомата уменьшается, но зато увеличивается нагрузочная способность провода, и баланс более-менее сохраняется. Проблемы могут быть тогда, когда провод в тепле, а автомат на холоде. Поэтому, если такая ситуация имеет место, то нужно сделать соответствующую поправку. Примеры таких зависимостей показаны ниже на графике. Более точную информацию по конкретной модели нужно смотреть в паспорте от завода-изготовителя.

Оцените статью:
Оставить комментарий