Физический закон ома

Закон Ома в дифференциальной форме

Сопротивление R{\displaystyle R} зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

J=σE,{\displaystyle \mathbf {J} =\sigma \mathbf {E} ,}

где:

  • J{\displaystyle \mathbf {J} } — вектор плотности тока,
  • σ{\displaystyle \sigma } — удельная проводимость,
  • E{\displaystyle \mathbf {E} } — вектор напряжённости электрического поля.

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость σij{\displaystyle \sigma _{ij}} является симметричным тензором ранга (1, 1), а закон Ома, записанный в дифференциальной форме, приобретает вид

Ji=∑i=13σijEj.{\displaystyle J_{i}=\sum _{i=1}^{3}\sigma _{ij}E_{j}.}

Раздел физики, изучающий течение электрического тока (и другие электромагнитные явления) в различных средах, называется электродинамикой сплошных сред.

Что изменится для полной цепи

В ситуации выше рассмотрен только некоторый участок цепи, обладающий каким-то фиксированным сопротивлением. Мы предполагаем, что при определенных условиях электроны начнут движение. Причина этого движения — тот самый груз на картинке. В реальных условиях это — источник тока. Это может быть батарейка, генератор постоянного тока, подключенный шнур блока питания и т.д. При подключении источника питания к проводнику в нем начинает протекать ток. Это мы тоже знаем и наблюдаем, когда включаем лампу в сеть, ставим заряжаться мобильный телефон и т.д.

Полная цепь включает в себя источник питания

Участок цепи имеет какое-то сопротивление. Это понятно. Но источник  питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).

Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:

Вроде не слишком сложно, но можно попробовать еще проще:

  • Чем выше ЭДС источника тока, тем больше ток.
  • Чем больше суммарное сопротивление, тем ток меньше.

Презентация на тему: » Закон полного тока Аналогичен закону Гаусса в электростатике.» — Транскрипт:

1

Закон полного тока Аналогичен закону Гаусса в электростатике

2

Закон полного тока в интегральной форме L – замкнутый контур произвольной формы. Вектор магнитной индукции – радиус вектору. dl – элемент произвольного контура L. dl 0 – элемент силовой линии прямого бесконечного тока (окружности). φ – угол между dl и dl0 или — проекция dl на В. Бесконечно длинный проводник с током I

3

Закон полного тока в интегральной форме Циркуляция вектора В по замкнутому контуру L:

4

Закон полного тока в интегральной форме 1.Магнитное поле прямолинейного тока – вихревое, т.к. (Электрическое поле – потенциальное,.) Магнитное поле не является потенциальным. 2. Циркуляция вектора В прямолинейного тока одинакова вдоль всех линий магнитной индукции и равна произведению μ 0 I.

5

Закон полного тока в интегральной форме Если магнитное поле создано системой токов, то по принципу суперпозиции:

6

Ток не пронизывает контур Циркуляция вектора В прямолинейного тока вдоль замкнутого контура, не охватывающего этот проводник, равна нулю.

7

Применение закона полного тока для вычисления простейших полей Поле бесконечного прямого тока В качестве контура выберем окружность радиуса r перпендикулярную току и имеющую центр на оси тока. В этом случае контур совпадает с силовой линией вектора магнитной индукции В и из соображения симметрии во всех точках, лежащих на одинаковом расстоянии от проводника, модуль вектора В одинаков.

8

Поле бесконечного прямого тока Закон полного тока:

9

Магнитное поле длинного соленоида l – длина соленоида. N – число витков. l >>d; B внутри = const B вне соленоида = 0

10

Магнитное поле длинного соленоида Возьмем замкнутый прямоугольный контур n – число витков соленоида на единицу длины

11

Магнитное поле тороида Тороид – кольцевая катушка, витки которой намотаны на сердечник, имеющий форму тора.

12

Магнитное поле тороида r R 1 : В = 0, поле вне тороида равно нулю. N – число витков тора. R 1 – внешний радиус тора. R 2 – внутренний радиус тора. r — радиус произвольной окружности.

13

Магнитное поле тороида R 2

14

Закон полного тока в дифференциальной форме – циркуляция вектора А по контуру L, который охватывает площадь S 0 и ориентирован таким образом, чтобы эта циркуляция была максимальной (max). — проекция вектора на положительную нормаль n к площадке dS, охватываемой контуром L ( S стремится к точке).

15

Закон полного тока в дифференциальной форме rot характеризует свойства поля в точке S 0

16

Закон полного тока в дифференциальной форме Теорема Стокса: Закон полного тока в интегральной форме:

17

Действие магнитного поля на проводники и контур с током Закон Ампера Элементарная сила dF, действующая на малый элемент длины dl проводника с током, находящийся в магнитном поле индукцией В, прямо пропорционален силе тока I в проводнике и векторному произведению α – угол между вектором В и вектором dl, направление которого совпадает с направлением тока I.

18

Закон Ампера Сила Ампера, действующая в магнитном поле на проводник с током конечной длины:

19

Закон Ампера Направление силы Ампера определяется правилом левой руки если ладонь левой руки расположить таким образом, что В входит в ладонь, четыре выпрямленных пальца направлены по току, то большой палец, отогнутый на 90 0, указывает направление F A.

20

Взаимодействие параллельных токов. Основная электрическая единица СИ –Ампер Поле бесконечного проводника:

21

Основная электрическая единица СИ –Ампер 1 Ампер (А) – это сила такого постоянного тока, при прохождении которого по двум прямолинейным бесконечно длинным проводникам, находящихся в вакууме на расстоянии 1 метр друг от друга, сила их взаимодействия составляет 2·10 -7 Н на каждый метр длины.

22

Основная электрическая единица СИ –Ампер Этот опыт является фундаментальным, так как позволяет выделить силы взаимодействия в «чистом» виде. Кулоновские силы в этом случае равны нулю, так как незаряженный проводник с током электронейтрален (ρ – = ρ + ).

23

Действие магнитного поля на контур с током Вектор магнитной индукции В находится в плоскости контура Контур поворачивается таким образом, что его положительная нормаль n совпадает с вектором В Прямолинейный контур в магнитном поле

24

Контур произвольной формы

25

На элемент контура действует пара сил:

26

Между нормалью n к контуру и вектором В угол α () Вектор В разложим на два вектора В n : В :

7.Закон Ома в дифференциальной форме

Плотность тока и напряженность вдоль проводника взаимосвязаны между собой. Разумно предположить, что это самая простая связь, т.е. линейная.

где σ – удельная электропроводность.

Данный закон является постулатом.

Для металлов закон выполняется почти всегда, для полуметаллов начинаются отклонения при очень больших плотностях тока. Для
других линейную связь можно заменить тензорной и закон Ома замыкает уравнения Максвелла.

Из этого соотношения следует, что линии плотности тока и линии напряженности при постоянном токе совпадают, а, следовательно,
распределение полей можно изучать по распределению тока (метод электролитической ванны).

Мнемоническая диаграмма для закона Ома

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

U — электрическое напряжение;I — сила тока;P — электрическая мощность;R — электрическое сопротивление

В соответствии с этой диаграммой формально может быть записано выражение:

R=UI,(7){\displaystyle R\!={U \over I},\qquad (7)}

которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

R=ϱls,(8){\displaystyle R\!={\varrho l \over s},\qquad (8)}

где:

  • ϱ{\displaystyle \varrho } — удельное электрическое сопротивление материала, из которого сделан проводник,
  • l{\displaystyle l} — его длина
  • s{\displaystyle s} — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами, задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока P{\displaystyle P} = εI{\displaystyle {\varepsilon \!I\!}} при минимальных потерях мощности в линии передачи P(r)=UI,{\displaystyle P(r)=UI,} где U=Ir,{\displaystyle U\!=Ir,} причём r{\displaystyle r} на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением

P(r)=P2rε2.(9){\displaystyle P(r)={\frac {P^{2}r}{\varepsilon ^{2}}}.\qquad (9)}

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, желательно всемерное увеличение ЭДС. Однако ЭДС ограничивается электрической прочностью обмотки генератора, поэтому повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в линии возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее практически используемое напряжение в дальних ЛЭП обычно не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

2.Плотность тока и сила тока

Для характеристики постоянного тока вводят две физические величины: векторную – плотность тока и скалярную – сила тока.

Определение: Плотностью тока называется физическая величина, определяющая заряд,
прошедший через площадку dS за время dt следующим образом.

Пусть все частицы одинаковые и имеют заряд q и скорость υ, которая называется средней или упорядоченной или
дрейфовой скоростью.

Определение: Силой тока называется поток плотности тока через какую-либо поверхность.

Силу тока можно определять как заряд, прошедший через поперечное сечение проводника за время Δt. Данное
выражение используется для определения единицы заряда.

Расчёт магнитных цепей

Теория без практического приложения мало интересна радиолюбителям, поэтому приступим к практическому применению теории магнитных цепей. Практический расчёты магнитный цепей сводится к определению магнитодвижущей силы Em (или как вариант определению количества витков провода N при некотором токе I), которая создает заданную магнитную индукцию B (или магнитный поток Φ). Для данных расчётов необходимо знать геометрические размеры магнитной цепи и магнитную проницаемость материала.

Для начала рассчитаем неразветвлённую магнитную цепь, пример которой дан на рисунке ниже

Данная магнитная цепь состоит из трех частей l1, l2, l3 выполненных из различных материалов. Где участок l1 – литая сталь, l2 – электротехническая сталь, l3 – воздушный разрыв.

Необходимо рассчитать число витков N обмотки для создания магнитного потока Φ = 3,6 * 10-3 Вб, если сила тока протекающего по обмоткам составляет I = 2 A.

Так как магнитная цепь у нас неоднородная, то для начала необходимо рассчитать среднюю длину магнитных силовых линий l1, l2, l3, которая проходит по центру магнитной цепи, а также сечение магнитной цепи S.

Далее рассчитываем магнитную индукцию заданных участков l1, l2, l3

Найдём значение напряженности магнитного поля. Так как часть магнитопровода представлена ферромагнетиками, то магнитную индукцию для них находим с помощью графической зависимости магнитной индукции от напряженности магнитного поля

Зависимость индукции от напряженности магнитного поля электротехнической и листовой стали.

Так l1 – литая сталь, то при В1 = 1,5 Тл, напряженность магнитного поля Н1 ≈ 7 А/см = 700 А/м;

l2 – электротехническая сталь, про В2 = 1,5 Тл, напряженность магнитного поля Н2 ≈ 30 А/см = 3000 А/м;

l3 – воздушный разрыв, напряженность магнитного поля определяется как

где μ = 4π*10-7 – магнитная постоянная,

μrB – относительная магнитная проницаемость воздуха, μrB ≈ 1.

Теперь используя закон полного тока, в котором магнитную индукцию выразим через напряженность магнитного поля, можно рассчитать количество витков провода N

В итоге получаем количество витков N = 4083,5.

Кроме неразветвленных магнитных цепей часто встречаются разветвлённые магнитные цепи, пример которой представлен на рисунке ниже

В качестве примера рассчитаем количество витков провода N, который намотан на центральном стержне, при котором в крайних стержнях создается магнитная индукция B2 = 1,2 Тл. При этом сила тока, протекающая по виткам провода I = 1 А, а материал магнитопровода – электротехническая сталь.

Первоначально разобьем контур АБВГА на два участка l1 и  l2, для который вычислим длину и поперечное сечение

Затем вычислим, какой магнитный поток необходимо создать в правом стержне

Согласно первому закону Кирхгофа для магнитных цепей магнитный поток центрального стержня Φ1 будет равен сумме потоков из крайних стержней. Ввиду того, что данная разветвлённая магнитная цепь является симметричной, то

Тогда магнитная индукция в центральном стержне составит

Теперь определим напряженность магнитного поля по графику зависимости от магнитной индукции:

при В1 = 1,6 Тл, напряженность составит Н1 = 44 А/см = 4400 А/м;

при В2 = 1,2 Тл, напряженность составит Н1 = 10 А/см = 1000 А/м;

В итоге можно рассчитать количество витков провода, необходимых по условию задачи

На сегодня всё, в следующей статье я расскажу о таком явлении как электромагнитная индукция и самоиндукция, а также важнейшем параметре электромагнитных элементов – индуктивности.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Мнемоническая диаграмма для закона Ома

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

U — электрическое напряжение;I — сила тока;P — электрическая мощность;R — электрическое сопротивление

В соответствии с этой диаграммой формально может быть записано выражение:

R=UI,(7){\displaystyle R\!={U \over I},\qquad (7)}

которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

R=ϱls,(8){\displaystyle R\!={\varrho l \over s},\qquad (8)}

где:

  • ϱ{\displaystyle \varrho } — удельное электрическое сопротивление материала, из которого сделан проводник,
  • l{\displaystyle l} — его длина
  • s{\displaystyle s} — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами, задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока P{\displaystyle P} = εI{\displaystyle {\varepsilon \!I\!}} при минимальных потерях мощности в линии передачи P(r)=UI,{\displaystyle P(r)=UI,} где U=Ir,{\displaystyle U\!=Ir,} причём r{\displaystyle r} на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением

P(r)=P2rε2.(9){\displaystyle P(r)={\frac {P^{2}r}{\varepsilon ^{2}}}.\qquad (9)}

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, желательно всемерное увеличение ЭДС. Однако ЭДС ограничивается электрической прочностью обмотки генератора, поэтому повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в линии возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее практически используемое напряжение в дальних ЛЭП обычно не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновременности достижения напряжением и током своих максимальных значений, то есть учёт фазового сдвига.

Если ток является синусоидальным с циклической частотой ω, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U=I⋅Z,{\displaystyle \mathbb {U} =\mathbb {I} \cdot \mathbb {Z} ,}

где:

  • U=Ueiωt{\displaystyle \mathbb {U} =U_{0}e^{i\omega t}} — комплексное напряжение или разность потенциалов,
  • I{\displaystyle \mathbb {I} } — комплексная сила тока,
  • Z=Re−iδ{\displaystyle \mathbb {Z} =Re^{-i\delta }} — комплексное сопротивление (электрический импеданс),
  • R = Ra2 + Rr2 — полное сопротивление (модуль импеданса),
  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока (фаза импеданса, с точностью до обратного знака).

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U=Usin⁡(ωt+φ){\displaystyle U=U_{0}\sin(\omega t+\varphi )} подбором такой U=Uei(ωt+φ),{\displaystyle \mathbb {U} =U_{0}e^{i(\omega t+\varphi )},} что Im⁡U=U.{\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F=Im⁡F.{\displaystyle F=\operatorname {Im} \mathbb {F} .}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо. Нелинейность цепи приводит к возникновению гармоник (колебаний с частотой, кратной частоте тока, действующего на цепь), а также колебаний с суммарными и разностными частотами. Вследствие этого закон Ома в нелинейных цепях, вообще говоря, не выполняется.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновременности достижения напряжением и током своих максимальных значений, то есть учёт фазового сдвига.

Если ток является синусоидальным с циклической частотой ω, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U=I⋅Z,{\displaystyle \mathbb {U} =\mathbb {I} \cdot \mathbb {Z} ,}

где:

  • U=Ueiωt{\displaystyle \mathbb {U} =U_{0}e^{i\omega t}} — комплексное напряжение или разность потенциалов,
  • I{\displaystyle \mathbb {I} } — комплексная сила тока,
  • Z=Re−iδ{\displaystyle \mathbb {Z} =Re^{-i\delta }} — комплексное сопротивление (электрический импеданс),
  • R = Ra2 + Rr2 — полное сопротивление (модуль импеданса),
  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока (фаза импеданса, с точностью до обратного знака).

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U=Usin⁡(ωt+φ){\displaystyle U=U_{0}\sin(\omega t+\varphi )} подбором такой U=Uei(ωt+φ),{\displaystyle \mathbb {U} =U_{0}e^{i(\omega t+\varphi )},} что Im⁡U=U.{\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F=Im⁡F.{\displaystyle F=\operatorname {Im} \mathbb {F} .}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо. Нелинейность цепи приводит к возникновению гармоник (колебаний с частотой, кратной частоте тока, действующего на цепь), а также колебаний с суммарными и разностными частотами. Вследствие этого закон Ома в нелинейных цепях, вообще говоря, не выполняется.

Применение на линии электропередач

В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.

Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.

Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.

Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.

Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.

Оцените статью:
Оставить комментарий