Закон кулона простыми словами

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Ш. Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

\(~F_{ynp} = k \cdot \dfrac{d^4}{l} \cdot \varphi\) ,

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1. Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α. Сила же взаимодействия шариков была пропорциональна φ, т. е. по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков:

\(~F \sim q_1 \cdot q_2\) .

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ. Затем поворотом головки 1 уменьшался этот угол до γ1. Общий угол закручивания φ1 = α1 + (γγ1)(α1 – угол поворота головки). При уменьшении углового расстояния шариков до γ2 общий угол закручивания φ2 = α2 + (γγ2) . Было замечено, что, если γ1 = 2γ2, ТО φ2 = 4φ1, т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

\(~F \sim \dfrac{1}{r^2}\) .

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

  • Закон Джоуля-Ленца
  • Зависимость сопротивления проводника от температуры
  • Правила буравчика
  • Закон Ома простыми словами

Задача 1

В вершинах правильного шестиугольника со стороной помещены друг за другом заряды . Найдите силу, действующую на заряд , расположенный в центре шестиугольника (см. рис. 6).

Рис. 6. Рисунок к условию задачи 1

Порассуждаем: заряд, находящийся в центре шестиугольника, будет взаимодействовать с каждым из зарядов, находящихся в вершинах шестиугольника. В зависимости от знаков это будет сила притяжения или сила отталкивания. С зарядами 1, 2 и 3, которые являются положительными, заряд, находящийся в центре, будет испытывать электростатическое отталкивание (см. рис. 7).

Рис. 7. Электростатическое отталкивание

А с зарядами 4, 5 и 6 (отрицательными) заряд в центре будет иметь электростатическое притяжение (см. рис. 8).

Рис. 8. Электростатическое притяжение

Суммарная сила, действующая на заряд, находящийся в центре шестиугольника, будет равнодействующей сил ,,,, и, модуль каждой из которых можно найти с помощью закона Кулона. Приступим к решению задачи.

Решение

Силы взаимодействия заряда, который находится в центре, с каждым из зарядов в вершинах зависит от модулей самих зарядов и расстояния между ними. Расстояние от вершин к центру правильного шестиугольника одинаковое, модули у взаимодействующих зарядов в нашем случае тоже равны (см. рис. 9).

Рис. 9. Расстояния от вершин до центра в правильном шестиугольнике равны

А значит, все силы взаимодействия заряда в центре шестиугольника с зарядами в вершинах будут равны по модулю. Воспользовавшись законом Кулона, мы можем найти этот модуль:

Расстояние от центра до вершины в правильном шестиугольнике равно длине стороны правильного шестиугольника, которая нам известна из условия, поэтому:

Теперь нам необходимо найти векторную сумму – для этого выберем систему координат: ось вдоль силы , а ось перпендикулярно (см. рис. 10).

Рис. 10. Выбор осей

Найдем суммарные проекции на оси – модуль каждой из них обозначим просто .

Так как силы и сонаправлены с осью , а находятся под углом к оси (см. рис. 11).

Рис. 11. Направление сил относительно оси

Проделаем такие же действия для оси :

Знак «-» – потому что силы и направлены в противоположную сторону оси . То есть проекция суммарной силы на ось , которую мы выбрали, будет равна 0. Получается, что суммарная сила будет действовать только вдоль оси , остается подставить сюда только выражения для модуля сил взаимодействия и и получить ответ. Суммарная сила будет равна:

Задача решена.

Принцип суперпозиции закон Кулона

Вне зависимости от того, сколько зарядов в системе, можно использовать закон Кулона, чтобы высчитать силу взаимодействия между каждой парой. Отсюда следует принцип суперпозиции, который формулируется примерно так:

На заряд, который расположен в любой точке системы зарядов, действует сила. При этом заряды в системе объединены. Данная сила представляет собой векторную сумму сил, создающихся каждым зарядом системы по отдельности и действующих на заряд в данной точке. К слову, принцип суперпозиции распространяется на любые заряженные тела, не обязательно только на точечные заряды.


Принцип суперпозиции

Рисунок: F=F21+F31; F2=F12+F32; F3=F13+F23;

Пример: Есть две заряженные точки, которые действуют на третью точку силами: F1 и F2. Тогда система, состоящая из первой и второй точек, действует на третью точку с силой F = F1 + F2.

Также отсюда следует, что напряженность электрического поля, то есть силовая характеристика поля, складывается из суммы напряженностей, которые создаются обособленным зарядом поля.

Напряженность электрического поля

1) Напряженность равна результату деления кулоновской силы, действующей на заряд, на величину этого заряда.

= Н/Кл = В/м

2) Величина пробного заряда не влияет на напряжённость.

3) Сила, которая действует на заряд от электрического поля, равняется произведению заряда на вектор напряженности в этой точке.


Напряженность электрического поля точечного заряда Q

Если рассмотреть с физической точки зрения, данное правило исходит из того, что покоящиеся заряды создают электростатическое поле. Иначе говоря, поля разных зарядов не влияют друг на друга, то есть суммарное поле системы зарядов складывается из векторной суммы электростатических полей, созданных каждым зарядом.

Важно! Следует учесть, что принцип суперпозиции не действует на очень малых или слишком больших расстояниях. Принцип суперпозиции подразумевает тот факт, что на силы между двумя предметами (подразумеваются силы взаимодействия) не влияет присутствие других тел, обладающих каким-то количеством заряда

Но при этом должно быть задано распределение зарядов

Принцип суперпозиции подразумевает тот факт, что на силы между двумя предметами (подразумеваются силы взаимодействия) не влияет присутствие других тел, обладающих каким-то количеством заряда. Но при этом должно быть задано распределение зарядов.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r2


Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 1018 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Взаимодействие зарядов закон Кулона

Силы взаимодействия между зарядами по модулю принимают одинаковое значение, но отличаются по направлению. Таким образом, напрашивается вывод, что сила взаимодействия относится к тем силам, которые повинуются третьему закону Ньютона: у любой силы есть противодействующая сила, равная ей по модулю, но обратная по направлению.


Взаимодействие зарядов

Между электрическими зарядами одного знака действуют силы отталкивания, а между зарядами разных знаков — силы притяжения. Взаимодействие между зарядами лежит в основе всех фундаментальных законов электродинамики, электромагнетизма, электростатики.

В каких единицах измеряется электрический заряд

Выбрать единицу электрического заряда, как и единицы других физических величин, можно произвольно. Дело здесь в целесообразности того или другого выбора.

Создать макроскопический эталон единицы электрического заряда, подобный эталону длины — метру, невозможно из-за неизбежной утечки заряда. Естественно было бы за единицу принять заряд электрона (это сейчас и сделано в атомной

физике). Но во времена Кулона еще не было известно о существовании в природе электрона. Заряд электрона слишком мал, и поэтому пользоваться им в качестве единицы заряда не всегда удобно.

Единица заряда — кулон.

В Международной системе единиц (СИ) единица заряда является не основной, а производной и эталон для нее не вводится. Наряду с метром, секундой и килограммом в СИ введена одна основная единица для измерения электрических величин — единица силы тока — ампер. Эталонное значение ампера устанавливается с помощью магнитных взаимодействий токов. Об этом было сказано в учебнике физики для VII класса.

Единицу заряда в СИ — кулон — устанавливают с помощью единицы силы тока. 1 кулон (Кл) — это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А.

Коэффициент к в законе Кулона при записи его в единицах имеет наименование , так как согласно (8.2)

а сила измеряется в ньютонах, расстояние — в метрах и заряд — в кулонах. Численное значение этого коэффициента можно определить экспериментально. Для этого достаточно измерить силу взаимодействия между двумя известными зарядами, находящимися на заданном расстоянии, и подставить значения в формулу (8.3). Полученное значение таково:

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой I т. Поэтому сообщить небольшому телу (размером порядка нескольких метров) заряд 1 Кл невозможно. Отталкиваясь друг от друга, заряженные частицы не могут удержаться на теле. Никаких других сил, которые были бы способны в данных условиях компенсировать кулоновское отталкивание, в природе не существует. Но в проводнике, который в целом нейтрален, привести в движение заряд 1 Кл не составляет большого труда. Ведь в обычной электрической лампе мощностью 100 Вт при напряжении 127 В устанавливается ток, немного меньший 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.

Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

Единицы измерения

Единица измерения заряда была названа в честь Кулона. 1 кулон — это заряд, проходящий при силе тока 1 ампер за 1 секунду через поперечное сечение проводника.

В международной системе единиц СИ:

$$ 1 K = 1 A * 1 c $$

Константа k законе Кулона в единицах системы СИ будет равна:

$$ k = {{9,0*10^9*Н*м^2}\over Кл^2}$$

Приведенная здесь формула закона Кулона справедлива для зарядов, находящихся в вакууме. Для зарядов, которые взаимодействуют в какой-либо среде, формула будет иметь такой же вид, но величина постоянной k будет другой. Значения k для разных веществ измерены экспериментально и приведены в справочных таблицах.

Что мы узнали?

Итак, мы узнали, что физическая величина, отвечающая за электрическое взаимодействие, называется электрическим зарядом. Одноименные заряды отталкиваются, а разноименные — притягиваются. Сила взаимодействия зарядов рассчитывается с помощью формулы закона Кулона.

Электрические заряды

Самое простое явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении

Еще древнегреческий философ Фалес Милетский (VII век до н.э.) обратил внимание на то, что кусок янтаря, будучи натертый кусочком шерстяной ткани, начинает притягивать небольшие предметы

Название элементарной, отрицательно заряженной частицы — электрон — на греческом языке означает янтарь.

Рис. 1. Наэлектризованные трением предметы притягиваются и отталкиваются.

В качестве предметов, которые с помощью трения легко электризуются, можно использовать, например, стекло, эбонит, пластмассу. При этом оказывается, что кусочки бумаги, наэлектризованные от этих разных предметов, могут как притягиваться, так и отталкиваться. Из этих наблюдений были сделаны следующие выводы:

  • Взаимодействие заряженных тел, обнаруженное в подобных экспериментах, называется электрическим взаимодействием;
  • Физическая величина, отвечающая за электрическое взаимодействие, называется электрическим зарядом. Электрический заряд обозначается буквой q;
  • Электрический заряд всегда можно передать от одного тела к другому;
  • Способность электрических зарядов к взаимному притяжению или отталкиванию можно объяснить, предположив, что существуют два вида зарядов. Один вид заряда называется положительным, а другой — отрицательным;
  • Одноименные заряды отталкиваются;
  • Разноименные заряды притягиваются.

Американский ученый Бенджамин Франклин в 1747 г. первым ввел названия для положительных и отрицательных зарядов, а также обозначения “−” и “+”.

Для обнаружения, изучения и измерения величины электрического заряда английский исследователь Уильям Гилберт (1600 г.) придумал специальный прибор — электроскоп.

Рис. 2. Электроскоп.

Оцените статью:
Оставить комментарий
Adblock
detector