Воздушные линии электропередачи
Содержание
- 1 История высоковольтных ЛЭП постоянного тока
- 2 Технические характеристики линий электропередач
- 3 Какие действия запрещены в охранной зоне ЛЭП
- 4 Влияние на здоровье человека
- 5 Воздушные линии электропередач напряжением от 0,4 до 1 кВ
- 6 Что это такое
- 7 Высоковольтные линии: характеристики и особенности
- 8 Кабельные линии электропередачи
- 9 Заключение
История высоковольтных ЛЭП постоянного тока
HVDC в 1971: этот ртутный вентиль рабочим напряжением 150 кВ преобразовывал переменный ток в постоянный для передачи от гидроэлектростанций Манитобы в отдалённые города.
Первая ЛЭП постоянного тока для передачи электроэнергии на большое расстояние была запущена в 1882 году на линии Мисбах-Мюнхен. Она передавала энергию от вращаемого паровой машиной генератора постоянного тока на печь стекольного завода. Передаваемая мощность составляла всего 2,5 кВт и на линии не было преобразователей постоянного тока в переменный.
Первая ЛЭП, использующая разработанный швейцарским инженером Рене Тюри (Rene Thury) метод преобразования токов генератор-двигатель, была построена в 1889 году в Италии компанией Acquedotto de Ferrari-Galliera. Для увеличения напряжения пары генератор-двигатель были соединены последовательно. Каждая группа была изолирована от земли и приводилась в движение основным двигателем. Линия работала на постоянном токе, с напряжением до 5000 В на каждой машине, некоторые машины имели двойные коммутаторы для уменьшения напряжения на каждом коммутаторе. Эта система передавала мощность 630 кВт на постоянном напряжении 14 кВ на расстояние 120 км.
По ЛЭП Moutiers-Lyon передавалась вырабатываемая ГЭС мощность 8600 кВт на расстояние 124 мили, включая 6 миль подземного кабеля. Для преобразования тока использовались восемь последовательно соединенных генераторов с двойными коммутаторами, выдававшими на выходе напряжение в 150 кВ. Эта линия работала примерно с 1906 по 1936 гг.
К 1913 году в мире действовало пятнадцать ЛЭП системы Тюри, работавших на постоянном напряжении 100 кВ, которые использовались до 1930-х, но вращающиеся электрические машины были ненадёжны, дороги в обслуживании и имели низкий КПД. В первой половине 20-го столетия были опробованы и другие электромеханические устройства, но они не получили широкого распространения.
Для преобразования высокого постоянного напряжения в низкое было предложено сначала заряжать последовательно соединённые аккумуляторы, а затем подключать их параллельно и подсоединять к потребителю. В начале XX века существовало, как минимум, две ЛЭП постоянного тока, использовавших этот принцип, но дальнейшего развития эта технология не получила из-за ограниченной ёмкости аккумуляторов, неэффективного цикла заряда/разряда и трудностей переключения между последовательным и параллельным соединением.
В период с 1920 по 1940 гг. для преобразования тока использовались ртутные вентили. В 1932 г. Дженерал Электрик применила в Mechanicville, Нью-Йорк ртутные вентили на ЛЭП постоянного тока напряжением 12 кВ, которая также использовалась для преобразования генерируемого переменного тока частотой 40 Гц в переменный ток нагрузки частотой 60 Гц. В 1941 г. была разработана 115-километровая подземная кабельная линия, мощностью 60 МВт, напряжением +/-200 кВ, для города Берлина, использовавшая ртутные вентили (Проект Эльба), но вследствие краха Третьего Рейха в 1945 проект не был завершен. Использование кабеля объяснялось тем, что во время военного времени подземный кабель будет менее заметной целью бомбардировок. Оборудование было вывезено в Советский Союз и там было введено в эксплуатацию в 1950 году.
Дальнейшее использование ртутных вентилей в 1954 г. положило начало современным высоковольтным ЛЭП постоянного тока. Первая такая ЛЭП была создана компанией ASEA между материковой Швецией и островом Готланд. Ртутные вентили использовались на всех ЛЭП, строившихся до 1975 г., но позднее были вытеснены полупроводниковыми приборами. С 1975 по 2000 гг. для преобразования тока широко применялись тиристоры, которые сейчас активно вытесняются полевыми транзисторами. С переходом на более надёжные полупроводниковые приборы были проложены десятки подводных высоковольтных ЛЭП постоянного тока.
На данный момент в мире осталось всего две ЛЭП с преобразователями на ртутных вентилях, все остальные были демонтированы или заменены преобразователями на тиристорах. Ртутные вентили используются на ЛЭП между Северным и Южным островами Новой Зеландии и ЛЭП Vancouver Island в Канаде.
Технические характеристики линий электропередач
Основные параметры ЛЭП:
- l — промежутки между стойками или опорами ЛЭП;
- dd — пространство между соседними кабельными линиями;
- λλ — можно расшифровать как протяженность гирлянды ЛЭП;
- HH — высота стойки;
- hh — самое малое разрешенное расстояние от низкой отметки кабеля до почвы.
Расшифровывать все характеристики установок сможет не каждый. Поэтому за помощью можно обратиться к профессионалу.
Ниже представлена таблица линий электропередач, обновленная в 2010 году. Более полное описание можно находить на форумах электрики.
Номинальное напряжение, кВ | ||||||
40 | 115 | 220 | 380 | 500 | 700 | |
Промежуток l, м | 160-210 | 170-240 | 240-360 | 300-440 | 330-440 | 350-550 |
Пространство d, м | 3,0 | 4,5 | 7,5 | 9,0 | 11,0 | 18,5 |
Протяженность гирлянды X, м | 0,8-1,0 | 1,4-1,7 | 2,3-2,8 | 3,0-3,4 | 4,6-5,0 | 6,8-7,8 |
Высота стойки Н, м | 11-22 | 14-32 | 23-42 | 26-44 | 28-33 | 39-42 |
Параметр линии h, м | 6-7 | 7-8 | 7-8 | 8-11 | 8-14 | 12-24 |
Количество кабелей в фазе* | 1 | 1 | 2 | 2 | 3 | 4-6 |
Объем сечений проводов, мм2 |
60-185 | 70-240 | 250-400 | 250-400 | 300-500 | 250-700 |
Основные элементы установки
Чтобы понизить число аварийных выключений, которые возникают при плохих погодных условиях, линии электростанций снабжаются грозозащитными канатами, которые устанавливаются на стойках выше кабелей и используются для подавления прямых попаданий грозы в ЛЭП. Они похожи на металлические оцинкованные многопроволочные тросы или специальные усиленные алюминиевые кабели малого сечения.
Производятся и используются такие устройства от молний с встроенными в их трубчатый стержень оптико-волоконными жилами, которые дают многоканальную связь. На территориях с постоянно повторяющимися и сильными морозами, лед откладывается на провода и образуются аварии из-за пробивания воздушных линий при приближении провисших канатов и кабелей.
Рабочая температура линий электропередач составляет от 150 до 200 градусов. Внутри провода не имеют изоляцию. Они должны обладать высокой степенью проводимости, а также устойчивостью к механическим повреждениям.
Ниже описано, какие линии электропередач используются для передачи электроэнергии.
Два основных вида
Какие действия запрещены в охранной зоне ЛЭП
Высокое напряжение, под которым находятся линии электропередач, является прямой угрозой жизни и здоровью как обслуживающего персонала, так и случайных людей, игнорирующих правила техники безопасности. Для минимизации несчастных случаев, а также нарушений работы ЛЭП, ГОСТом 12.1.051-90 предусмотрен перечень действий, которые запрещается проводить в охранной зоне.
В охранной зоне ЛЭП любого напряжения запрещено:
- Строительство, капитальный ремонт, снос зданий или сооружений.
- Устанавливать хранилища горюче-смазочных материалов, в связи с возможностью непреднамеренного воспламенения или пожара. В охранную зону линии электропередачи также запрещено сливать отработанные ГСМ из близлежащих баз хранения.
- Размещать свалки или места большого скопления как строительного, так и бытового или промышленного мусора.
- Строить АЗС.
- Проводить работы с использованием взрывных или горючих веществ. И также запрещено разведение огня.
- На провода как высокого, так и низкого напряжения категорически воспрещается накидывание проводников с целью попытки кражи электроэнергии. Это может привести к несчастному случаю, а в случае с ЛЭП высокого напряжения – к летальному исходу.
Запреты на строительство в зоне и под ЛЭП
ГОСТом 12.1.051-90 запрещены ремонтные работы на воздушных ЛЭП в период грозы или дождя. Если же линия электропередачи имеет важный статус и своим бездействием может нарушить работу серьёзных промышленных или государственных предприятий, то ремонтные работы на ней допускаются только при снятом напряжении. При проведении работ на воздушных линиях без контакта с проводниками, расстояние от человека до ближайшего кабеля, должно быть, не менее двух метров.
Работа под напряжением, со всеми техническими средствами защиты допускается только в двух случаях: при поднятии водяной струи не более чем на 3 метра от земли или при непопадании водяной струи в охранную зону ЛЭП.
В охранной зоне ЛЭП, без разрешения организаций, их эксплуатирующих, не допускаются какие-либо работы. В перечень также включены такие пункты, как выкапывание земли или прокладывание дорожных линий.
Работа подъёмными механизмами в зоне
Отдельным пунктом является использование стрелочных кранов вблизи линий электропередач. Оптимальное расстояние, на котором может работать подобная техника – не менее 30 м. Если же без крана проведение работы невозможно, то это отображается в наряде-допуске – специальном документе, выдаваемом крановщику.
Влияние на здоровье человека
Благодаря исследованиям ученых, было установлено, что воздействие электромагнитных полей сказывается негативно на здоровье человека. В его теле образуются токи. Это объясняется проводимостью органов и тканей, по которым циркулирует кровь и лимфа.
Анализ проведенных исследований показал, что жители домов находящихся рядом с ЛЭП или с подстанциями, заболевали раком в два раза чаще, чем жители других районов. На здоровье ребенка поле воздействовало еще сильней. Дети заболевали лейкозом в 4 раза чаще.
Зафиксировано отрицательное влияние высоковольтных линий на следующие системы организма:
- сердечно-сосудистую,
- гематологическую,
- нервную,
- половую,
- эндокринную,
- иммунную.
Установлено, что здоровье людей, живущих вблизи линии электропередач с течением времени постепенно ухудшается. У них чаще возникают головные боли, проблемы с памятью, боли в мышцах, головокружения. Возрастает количество инсультов и инфарктов. Беспокоит бессонница и слабость. У женщин появляются проблемы с вынашиванием и рождением детей. Здоровье новорожденных ослаблено.
Вред, получаемый человеком при воздействии на него электрического поля, зависит от напряженности и от длительности действия на организм.
Допустимые значения:
- в населенных пунктах – 5 кВ/м;
- при пересечении с дорогами – 10 кВ/м;
- вне населенных пунктов – 15 кВ/м;
- в труднодоступных местах – 20 кВ/м.
На человека может длительно воздействовать электрическое поле напряженностью 0,5 кВ/м, при этом негативного влияния на здоровье не происходит.
Если же требуется пребывание человека в местах высокой напряженности, нужно руководствоваться следующими нормативами, по которым время пребывания в зоне:
- не ограничивается при 5 кВ/м;
- не более 180 минут при 10 кВ/м;
- 90 минут при 15 кВ/м;
- 10 минут при 20 кВ/м;
- 5 минут при 25 кВ/м.
При соблюдении этих условий, в течение суток здоровье человека восстанавливается.
Если невозможно ограничить время пребывания работающего персонала на опасных объектах, применяется экранирование рабочих мест металлическими листами, сетками и другими приспособлениями. Хороший эффект дают кустарники высотой от 3-х метров и 6-ти метровые деревья, посаженные под ВЛ.
При воздействии электромагнитных полей на жилые дома, важно сохранить здоровье, проживающих там людей. Для этого разработаны санитарные нормы (СанПиН 2971-84), регламентирующие минимальное безопасное расстояние, защитную зону, от линии электропередач до ближайших зданий
Повышенные требования предъявляются к расположению трасс ультравысоких напряжений. Расстояние от ВЛ до населённого пункта должно быть:
- при 750 кВ не меньше 250 м,
- при 1150 кВ не менее 300 м.
Воздушные линии электропередач напряжением от 0,4 до 1 кВ
Для воздушных линий электропередач напряжением от 0,4 до 1 кВ необходимо минимальное значение сопротивления. Кроме того, требуется, чтобы материал обладал механической прочностью и не портился от воздействия влаги.
Воздушные линии этого типа получили заметное распространение в небольших населенных пунктах вследствие своей бюджетной стоимости.
Линии электропередачи этого типа преимущественно выпускают из стали и алюминия вместо относительно дорогой меди.
Использование алюминия ограничено его небольшой прочностью, следствием чего становится большее значение стрелы провеса, что влечет либо меньшее расстояние между опорами, либо увеличение их высоты
Площадь сечения проводов, используемых для передачи электричества с данными показателями напряжения, должна составлять как минимум:
- 4 мм2 для стальных однопроволочных;
- 10 мм2 для изготовленных из сплава стали и алюминия;
- 16 мм2 для алюминиевых.
Воздушные линии электропередач напряжением от 0,4 до 1 кВ снабжаются заземляющими устройствами согласно нормативам.
Грозозащитное заземление требуется установить через каждые 120м на опорах, а также:
- на установленной от конца линии за 50м опоре;
- на конечной опоре с вводным ответвлением;
- на опоре с выходом в жилое помещение;
- на опоре, которая находится на пересечении линий высокого напряжения.
Заземление выполняется на уличных фонарях щитах и всех металлоконструкциях.
Что это такое
Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления — специальная опора и линейный вход.
Как выглядит станция ЛЭП
Опоры можно разделить на:
- промежуточные которые находятся на прямых участках трассы установок, их используют только для удержания кабелей;
- анкерные в основном монтируются на прямых границах ВЛ;
- концевые стойки — это подвид анкерных, они ставятся в начале и конце ВЛ. При стандартных условиях функционирования установки, они принимают нагрузку от кабелей;
- специальные стойки используются для изменения положения кабелей на ЛЭП;
- декорированные стойки, помимо поддержки, они выполняют роль эстетичной красоты.
Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.
Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы
При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.
Типы используемых опор
Высоковольтные линии: характеристики и особенности
Как следует из названия, основным отличительным признаком высоковольтных линий является высокое напряжение. В среднем по странам СНГ в таких проводах протекает ток напряжением от 500 кВ, это в 2000 раз выше, чем в домашней розетке.
Разумеется, и электромагнитное поле у такого проводника значительно сильнее. И если долго находиться рядом с ним, то в организме наступят необратимые изменения, поэтому линии размещают на безопасной высоте 20-30 метров, откуда электромагнитное поле доходит до земли, уже сильно ослабевая.
Но можно ли верить ученым?
На сегодняшний день официальная наука и медицина утверждают, что если линия находится на нужной высоте, то никакого вредного воздействия на человека она не оказывает.
Спорить с наукой трудно, да и ни к чему это, так как ученых не переубедить. Поэтому существуют две точки зрения: научная и псевдонаучная, и они противоречат друг другу.
Различные отечественные и зарубежные исследователи периодически ставят опыты, которые доказывают, что поля все-таки определенным образом влияют на здоровье человека. Однако эти исследования не имеют под собой точного обоснования и не подтверждены мировым сообществом. Поэтому все подобные доказательства нельзя считать достоверными.
Кабельные линии электропередачи
Что такое кабельная ЛЭП? Данный тип линий электропередач отличается от ВЛ тем, что провода различных фаз изолированы и объединены в единый кабель.
По условиям прохождения
По условиям прохождения КЛ делят на:
- Подземные;
- Подводные;
- По сооружениям.
Кабельные сооружения
Помимо того, что кабель может находиться в воде или земле, часть его обязательно проходит по кабельным сооружениям, к которым относятся:
- Кабельные каналы;
- Кабельная камера;
- Кабельная шахта;
- Кабельный колодец;
- Двойной пол;
- Кабельная галерея.
Кабельный колодец
Данный перечень неполон, основное отличие кабельных сооружений от прочих – они предназначены исключительно для монтажа кабеля вместе с устройствами крепления, силовыми муфтами и ответвлениями.
По типу изоляции
Наибольшее распространение получили кабельные линии с твердой изоляцией:
- Поливинилхлоридная;
- Масляно-бумажная;
- Резино-бумажная;
- Полиэтиленовая (сшитый полиэтилен);
- Этилен-пропиленовая.
Реже встречаются жидкостная и газовая изоляции.
Заключение
После того, как удалось выяснить, как по количеству изоляторов можно определить напряжение на ЛЭП, осталось понять, насколько можно доверять такому способу.
Климатические условия на территории России довольно разнообразны. Например, умеренно континентальный климат в Москве значительно отличается от влажных субтропиков Сочи. Поэтому, ВЛ одинакового класса напряжения, расположенные в различных климатических и природных условиях, могут отличаться друг от друга и по типу опор, и по количеству изоляторов.
В случае комплексного анализа по всем критериям, предложенным в статье, определение напряжения ЛЭП по внешним признакам будет довольно точным. А вот каким может быть напряжение в конкретной высоковольтной магистрали, со 100% точностью вам подскажут местные энергетики.
Материалы по теме:
- Причины потерь электроэнергии на больших расстояниях
- Что такое электрическое поле
- Шаговое напряжение и пути его преодоления
12.11.2019