Что это — ультразвук? применение ультразвука в технике и медицине

Использование ультразвука в области медицины

Терапевтическое влияние ультразвука обусловлено способностью его к проникновению в ткани, их прогреванию и микромассажу. Необходимо отметить, что ультразвук, вероятно, обладает рядом специфических особенностей воздействия, поскольку глубокое прогревание тканей достигается и посредством других методик, но положительный эффект в некоторых случаях наступает только после использования ультразвука.

С учетом рефлекторного механизма можно использовать ультразвук не только для того, чтобы он прямо воздействовал на эпицентр боли, но также для влияния косвенного.

Благодаря свойствам, указанным выше, ультразвук при ряде условий способен оказывать бактерицидное, спазмолитическое, противовоспалительное и болеутоляющее действие. Использование ультразвука может сочетаться с другими терапевтическими приемами

Из-за повышенной биологической активности необходимо соблюдать осторожность при лечении ультразвуком. Положительные результаты при его терапевтическом применении получены в ряде заболеваний

Очень эффективен он при лечении невралгий, миальгий, невритов ампутированных конечностей, периартритов, артритов и артрозов. Вреден ли ультразвук для человека, интересно многим.

Что такое ультразвук?

Влияние ультразвука и инфразвука на организм человека уникально. Ультразвук является звуковой волной с высокой частотой, которая может распространяться в твердых материалах, в жидкости и в газообразной среде, что обусловлено влиянием упругих сил. Происхождение ультразвука может быть как естественным, так и искусственным. Так, в природе существуют органы чувств, которые позволяют воспроизводить и получать колебания, сформированные ультразвуковой волной, например у дельфинов, летучих мышей, бабочек, китов, саранчи, кузнечиков, сверчков, отдельных видов рыб и птиц.

Благодаря этому они способны прекрасно ориентироваться в пространстве, включая ночное время, а также общаться с сородичами. Дельфины и киты могут посылать необходимые сигналы на десятки тысяч километров. Кроме того, ультразвук способны улавливать собаки и кошки. На интенсивность и скорость распространения ультразвука непосредственно воздействуют признаки того вещества, в котором он передается: если он удаляется от источника, находящегося в воздухе, то звук довольно быстро ослабевает. В жидкостях, а также при прохождении сквозь твердое вещество сила ультразвука уменьшается медленно. Каково действие на организм человека ультразвука?

Другие сферы применения

Ультразвуковые сенсоры применяют в различных областях:

  • Для контроля физико-химических характеристик веществ. Принцип действия основан на сравнения скорости звука в проверяемом веществе с эталонным – расхождение указывает на изменения в веществе.
  • Для контроля расхода жидких веществ в трубопроводах. Принцип действия основывается на сравнении скорости ультразвуковых колебаний по направлению потока и против него. Метод не требует помещение датчика внутрь трубопровода — сенсор крепится с наружной стороны.
  • Для определения уровней жидких или сыпучих материалов. Принцип действия основан на отражении ультразвука, посылаемого датчиком, от границы раздела «газ – жидкий или сыпучий материал». При понижении уровня время прохождения колебаний меняется, и прибор сигнализирует об этом.
  • Для охраны помещений. Принципов действия несколько:
  • охранный датчик испускает ультразвуковое излучение. При появлении в зоне обнаружение объекта отраженный сигнал принимается датчиком. Далее он действует по выбранному алгоритму: включает сирену, подает сигнал на пульт охраны и т.д.;
  • сигнал охранного датчика попадает на приемник, расположенный на некотором расстоянии. При прохождении объекта между приемником и излучателем сигнал прерывается, и сенсор действует по приведенному алгоритму.

Для надежности обычно применяют несколько ультразвуковых охранных датчиков, работающих на разных принципах.

Пожарная безопасность. Ультразвуковой пожарный извещатель действует по тому же принципу, что и охранный. Реагирует не на объект, а на движение нагретого огнем воздуха. Отличается высокой чувствительностью.    Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.

Ультразвуковой контроль качества материалов и изделий. Принцип действия основан на отличии скорости звука в разных средах и отражении ультразвука от границы сред. Обнаруживает точное расположение внутренних дефектов на глубине нескольких метров.

Медицина. Проведение ультразвукового исследования для диагностики внутренних патологий. Принцип работы датчика основан том, что скорость прохождения ультразвуковых волн в тканях человека. Отраженный сигнал меняет длину волны в различных тканях организма. Визуализация сигнала на экране прибора дает возможность увидеть строение внутренних органов человека.

Особенности

Имея общую природу, волны слышимого диапазона, равно как и ультразвуковые, подчиняются физическим законам. Но у ультразвука есть ряд особенностей, позволяющих широко его использовать в различных областях науки, медицины и техники:

1. Малая длина волны. Для наиболее низкого ультразвукового диапазона она не превышает нескольких сантиметров, обуславливая лучевой характер распространения сигнала. При этом волна фокусируется и распространяется линейными пучками.

2. Незначительный период колебаний, благодаря чему ультразвук можно излучать импульсно.

3. В различных средах ультразвуковые колебания с длиной волны, не превышающей 10 мм, обладают свойствами, аналогичными световым лучам, что позволяет фокусировать колебания, формировать направленное излучение, то есть не только посылать в нужном направлении энергию, но и сосредотачивать ее в необходимом объеме.

4. При малой амплитуде существует возможность получения высоких значений энергии колебаний, что позволяет создавать высокоэнергетические ультразвуковые поля и пучки без использования крупногабаритной аппаратуры.

5. Под воздействием ультразвука на среду возникает множество специфических физических, биологических, химических и медицинских эффектов, таких как:

  • диспергирование;
  • кавитация;
  • дегазация;
  • локальный нагрев;
  • дезинфекция и мн. др.

Ультразвук в медицине

Различные виды ультразвука применяются для воздействия на живые организмы. В медицинской практике его использование сейчас очень популярно. Оно основывается на эффектах, которые возникают в биологических тканях тогда, когда через них проходит ультразвук. Волны вызывают колебания частиц среды, что создает своеобразный микромассаж тканей. А поглощение ультразвука ведет к их локальному нагреванию. Вместе с тем в биологических средах происходят определенные физико-химические превращения. Эти явления в случае умеренной интенсивности звука необратимых повреждений не вызывают. Они только улучшают обмен веществ, а значит и способствуют жизнедеятельности подверженного им организма. Такие явления применяются в УЗ-вой терапии.

Ультразвуковая хирургия

Современная хирургия, использующая ультразвуковые волны, подразделяется на два направления:

Избирательно разрушающая участки ткани особыми управляемыми ультразвуковыми волнами высокой интенсивности с частотами от 10 6 до 10 7 Гц;

Использующая хирургический инструмент с наложением ультразвуковых колебаний от 20 до 75 кГц.

Примером избирательной УЗ-хирургии может послужить дробление камней ультразвуком в почках. В процессе такой неинвазивной операции ультразвуковая волна воздействует на камень через кожу, то есть снаружи человеческого тела.

К сожалению, подобный хирургический метод имеет ряд ограничений. Нельзя использовать дробление ультразвуком в следующих случаях:

Беременным женщинам на любом сроке;

Если диаметр камней более двух сантиметров;

При любых инфекционных заболеваниях;

При наличии болезней, нарушающих нормальную свертываемость крови;

В случае тяжелых поражений костной ткани.

Несмотря на то что удаление ультразвуком почечных камней проводится без операционных разрезов, оно довольно болезненное и выполняется под общей или местной анестезией.

Хирургические ультразвуковые инструменты используются не только для менее болезненного рассечения костных и мягких тканей, но и для уменьшения кровопотерь.

Обратим свой взор в сторону стоматологии. Ультразвук камни зубные удаляет менее болезненно, да и все остальные манипуляции врача переносятся гораздо легче. Кроме того, в травматологической и ортопедической практике ультразвук используется для восстановления целостности сломанных костей. Во время таких операций пространство между костными отломками заполняют специальным составом, состоящим из костной стружки и особой жидкой пластмассы, а затем воздействуют ультразвуком, благодаря чему все компоненты крепко соединяются. Те, кто перенес хирургические вмешательства, в ходе которых использовался ультразвук, отзывы оставляют разные — как положительные, так и отрицательные. Однако следует отметить, что довольных пациентов все же больше!

В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

Механическая обработка хрупких и сверхтвердых материалов

Если ввести между обрабатываемой деталью и рабочей поверхностью инструмента, использующего ультразвук, абразивный материал, то частицы абразива при работе излучателя станут воздействовать на поверхность этой детали. При этом разрушается материал и удаляется, подвергаясь обработке под действием множества направленных микроударов. Кинематика обработки складывается из основного движения — резания, то есть совершаемых инструментом продольных колебаний, и вспомогательного — движения подачи, которые осуществляет аппарат.

Ультразвук может проделывать различные работы. Для абразивных зерен источником энергии являются продольные колебания. Они и разрушают обрабатываемый материал. Движение подачи (вспомогательное) может быть круговым, поперечным и продольным. Обработка с помощью ультразвука имеет большую точность. В зависимости от того, какую зернистость имеет абразив, она составляет от 50 до 1 мк. Используя инструменты разной формы, можно делать не только отверстия, но также и сложные вырезы, криволинейные оси, гравировать, шлифовать, изготовлять матрицы и даже сверлить алмаз. Используемые как абразив материалы — корунд, алмаз, кварцевый песок, кремень.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты, дельфины, летучие мыши, грызуны, долгопяты).

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока — струи газа или жидкости. Вторая группа излучателей — электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Основная статья: Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Фрэнсис Гальтон.

Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.

Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Сирена — механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).

Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске — роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

Отличие от обычного звука

От обычного звука он отличается тем, что распространяется во всех направлениях от источника. Ультразвук по сути своей является волной в форме узкого луча. Такие особенности позволяют применять его для исследования морского и океанского дна, обнаружения затонувших кораблей и подводных лодок, а также различных препятствий, находящихся под водой, и точного расстояния.

Но при распространении в воде ультразвуковые волны могут причинить вред тем организмам, которые в ней обитают. Под влиянием ультразвука у рыб нарушается чувство равновесия, они всплывают к поверхности воды вверх животом, и поэтому не могут принять свое нормальное положение. Если воздействие ультразвука интенсивное и продолжительное, превышает допустимые пределы, то в конечном итоге это станет причиной очень серьезных повреждений и даже смерти рыб. Если же его влияние временное, а интенсивность не слишком высокая, после прекращения его образ жизни и поведение рыб возвращаются в привычные рамки.

Роль ультразвука в науке и практике

Ультразвук в последние годы стал играть в научных исследованиях все большую роль. Были успешно проведены экспериментальные и теоретические изыскания в области акустических течений и ультразвуковой кавитации, что позволило ученым разработать технологические процессы, которые протекают при воздействии в жидкой фазе ультразвука. Он является мощным методом исследования разнообразных явлений и в такой области знания, как физика. Ультразвук применяется, например, в физике полупроводников и твердого тела. Сегодня формируется отдельное направление химии, получившее название «ультразвуковая химия». Ее применение позволяет ускорить множество химико-технологических процессов. Зародилась также молекулярная акустика — новый раздел акустики, который изучает молекулярное взаимодействие с веществом звуковых волн. Появились новые сферы применения ультразвука: голография, интроскопия, акустоэлектроника, ультразвуковая фазомерия, квантовая акустика.

Помимо экспериментальных и теоретических работ в этой области, сегодня было выполнено множество практических. Разработаны специальные и универсальные ультразвуковые станки, установки, которые работают под повышенным статическим давлением и др. Внедрены в производство ультразвуковые автоматические установки, включенные в поточные линии, что позволяет существенно повысить производительность труда.

Источники ультразвука

Ультразвук в природе встречается и как компонент множества естественных шумов (водопада, ветра, дождя, гальки, перекатываемой прибоем, а также в сопровождающих разряды грозы звуках и т. д.), и как неотъемлемая часть животного мира. Им некоторые виды животных пользуются для ориентировки в пространстве, обнаружения препятствий. Известно, кроме того, что ультразвук в природе используют дельфины (в основном частоты от 80 до 100 кГц). Очень большой при этом может быть мощность излучаемых ими локационных сигналов. Известно, что дельфины способны обнаруживать косяки рыб, находящиеся на расстоянии до километра от них.

Излучатели (источники) ультразвука делятся на 2 большие группы. Первая — это генераторы, в которых колебания возбуждаются из-за наличия в них препятствий, установленных на пути движения постоянного потока — струи жидкости или газа. Вторая группа, в которую можно объединить источники ультразвука, — электроакустические преобразователи, которые превращают заданные колебания тока или электрического напряжения в механическое колебание, совершаемое твердым телом, излучающее акустические волны в окружающую среду.

Механическое, физико-химическое, термическое действие

Механическое действие

Благодаря переменному акустичес­кому давлению ультразвуковой волны происходит микровибра­ция, своеобразный микромассаж тканей. При большой интенсив­ности ультразвука в фазе растяжения может происходить разрыв межмолекулярных сил сцепления и возникновение микрополос­тей. Этот процесс получил название кавитации, при которой от­мечается выделение большого количества энергии. Кавитация приводит к разрушению молекул химических веществ. Это явле­ние используют, например, в стоматологии для снятия зубного камня.

Физико-химическое действие

Физико-химическое действие ультразвука — связано с пере­стройкой внутриклеточных молекулярных комплексов,так как ультразвуковая волна разрывает межмолекулярные связи. Повы­шается ферментативная активность тканей, которая, в свою оче­редь, приводит к образованию биологически активных веществ: ге­парина, гистамина, серотонина и т.д.

Термическое действие

Термическое действие ультразвука — связано с переходом ме­ханической энергии в тепловую и усилением биохимических про­цессов; повышается температура тканей, вследствие чего расши­ряются сосуды (и кровеносные и лимфатические), следовательно, улучшается трофика тканей, повышается фагоцитоз, повышается проницаемость тканевых мембран, улучшаются процессы регене­рации, нормализуется нервно-мышечная возбудимость, сосудис­тый тонус, изменяются функции эндокринных желез.

Принцип действия

Датчики ультразвукового излучения используются для обнаружения объектов, контроля их движения и измерения расстояний до них. Принцип действия состоит в следующем.  Прибор излучает звуковые колебания с частотой больше 20000 герц.  При встрече с объектом они отражаются, попадают в приемник, и фиксируется.  Электронная схема отсчитывает время, которое прошло с момента импульса до момента приема эха. Расстояние высчитывается по формуле: R= tV/2, где t – время между импульсом и приемом эха, V —   скорость звука. Произведение делится на 2, потому что звуковые волны проходят путь, равный двойному расстоянию между объектом и датчиком.  Скорость звука в различных средах неодинаковая: в воздухе это 331 м/сек, в дереве –1500, в воде – 1430.

Расстояние, на котором обнаруживаются объекты – до 8 метров, при условии, что у них твердая и гладкая поверхность.  Если они изготовлены из мягкого, пористого материала, поглощающего звук – расстояние сокращается.

Очистка с помощью ультразвука

Качество такой очистки нельзя сравнить с другими способами. При полоскании деталей, к примеру, на поверхности их сохраняется до 80% загрязнений, около 55 % — при вибрационной очистке, около 20 % — при ручной, а при ультразвуковой остается не более 0,5 % загрязнений. Детали, которые имеют сложную форму, возможно хорошо очистить лишь с помощью ультразвука. Важным преимуществом его использования является высокая производительность, а также малые затраты физического труда. Более того, можно заменить дорогостоящие и огнеопасные органические растворители дешевыми и безопасными водными растворами, применять жидкий фреон и др.

Серьезная проблема — загрязнение воздуха копотью, дымом, пылью, окислами металлов и т. д. Можно использовать ультразвуковой способ очистки воздуха и газа в газоотводах независимо от влажности среды и температуры. Если УЗ-излучатель поместить в пылеосадочную камеру, в сотни раз увеличится эффективность ее действия. В чем же заключается сущность такой очистки? Беспорядочно движущиеся в воздухе пылинки сильнее и чаще ударяются друг о друга под действием ультразвуковых колебаний. При этом размер их увеличивается за счет того, что они сливаются. Коагуляцией называется процесс укрупнения частиц. Специальными фильтрами улавливаются утяжеленные и укрупненные их скопления.

Примеры

Ультразвуковой датчик Lego Mindstorm EV 3

Входит в робототехнический конструктор Lego Mindstorm EV 3. Основная функция — измерение расстояния до объектов, находящихся в поле зрения сенсора.

Выполнен по схеме с двумя головками. Одна – пьезоэлектрический преобразователь-излучатель AW8T40,  другая —  пьезоэлектрический преобразователь-приемник AW8R40. Головки размещены в общем корпусе вместе с микроконтроллером   и микросхемами усиления сигнала. Датчик через кабель подключается к центральному микрокомпьютеру EV 3.

Характеристики:

  • Частота излучения – 40000 герц.
  • Дистанция обнаружения — до 255 см.
  • Слепая зона — 3 см.
  • Точность измерения — +/- 1 см.
  • Вес – 0,05 кг.

Лучше обнаруживает объекты с гладкой, хорошо отражающей звуковые волны поверхностью. Объекты, покрытые мягкой тканью, могут не обнаруживаться датчиком.  Затруднено фиксирование объектов сферической формы, либо имеющих наклонные поверхности.

Работает в двух режимах:

  •  режим определения расстояния;
  • режим обнаружение другого ультразвукового излучателя.

Датчик сконструирован для использования в наборе Lego Mindstorm EV 3 и автоматически определяется программным обеспечением микрокомпьютера. Устанавливается на роботах, собранных из элементов набора.

Ультразвуковой датчик HC-SR04

Датчик также выполнен по двухголовочной схеме и состоит из пьезоэлектрического преобразователя-излучателя TCT40-16T, и пьезоэлектрического преобразователя-приемника TCT40-16R. Они размещены на плате, размером 45х25 мм, с обратной стороны которой смонтированы микросхемы и другие элементы. Внизу платы выведены четыре контакта: 2 – питания, 2 – цифровые вход и выход.

Характеристики:

  • Напряжением — 5 В.
  • Частота ультразвука — 40 кГц
  • Дистанция обнаружения — до 400 см.
  • Слепая зона – 2 см.
  • Минимальный разрешение – 0,3 см.
  • Эффективный угол наблюдения — 15°.
  • Вес- 8,3 гр.

Обычно он интегрируется с   аппаратной платформой Arduino, но может подключаться и к другим микроконтроллерам. Благодаря открытой архитектуре и программному коду Arduino, HC-SR04 широко используется в любительских и профессиональных проектах: конструирование робототехники, создание измерительных приборов и сторожевых систем и т.п.

Работает только в активном режиме – не определяет посторонние источники ультразвука.

Востребованности прибора способствует цена – около 100 рублей.

Саундтреки

Из фильма В центре вниманияИз фильма Ван ХельсингИз сериала Дневники ВампираИз фильма Скауты против зомбииз фильмов ‘Миссия невыполнима’Из фильма Голодные игры: Сойка-пересмешница. Часть 2OST ‘Свет в океане’OST «Большой и добрый великан»из фильма ‘Новогодний корпоратив’из фильма ‘Список Шиндлера’ OST ‘Перевозчик’Из фильма Книга джунглейиз сериала ‘Метод’Из фильма ТелохранительИз сериала Изменыиз фильма Мистериум. Тьма в бутылкеиз фильма ‘Пассажиры’из фильма ТишинаИз сериала Кухня. 6 сезониз фильма ‘Расплата’ Из фильма Человек-муравейиз фильма ПриглашениеИз фильма Бегущий в лабиринте 2из фильма ‘Молот’из фильма ‘Инкарнация’Из фильма Савва. Сердце воинаИз сериала Легко ли быть молодымиз сериала ‘Ольга’Из сериала Хроники ШаннарыИз фильма Самый лучший деньИз фильма Соседи. На тропе войныМузыка из сериала «Остров»Из фильма ЙоганутыеИз фильма ПреступникИз сериала СверхестественноеИз сериала Сладкая жизньИз фильма Голограмма для короляИз фильма Первый мститель: ПротивостояниеИз фильма КостиИз фильма Любовь не по размеруOST ‘Глубоководный горизонт’Из фильма Перепискаиз фильма ‘Призрачная красота’Место встречи изменить нельзяOST «Гений»из фильма ‘Красотка’Из фильма Алиса в ЗазеркальеИз фильма 1+1 (Неприкасаемые)Из фильма До встречи с тобойиз фильма ‘Скрытые фигуры’из фильма Призывиз сериала ‘Мир Дикого Запада’из игр серии ‘Bioshock’ Музыка из аниме «Темный дворецкий»из фильма ‘Американская пастораль’Из фильма Тарзан. ЛегендаИз фильма Красавица и чудовище ‘Искусственный интеллект. Доступ неограничен»Люди в черном 3’из фильма ‘Планетариум’Из фильма ПрогулкаИз сериала ЧужестранкаИз сериала Элементарноиз сериала ‘Обратная сторона Луны’Из фильма ВаркрафтИз фильма Громче, чем бомбыиз мультфильма ‘Зверопой’Из фильма БруклинИз фильма Игра на понижениеИз фильма Зачарованнаяиз фильма РазрушениеOST «Полный расколбас»OST «Свободный штат Джонса»OST И гаснет светИз сериала СолдатыИз сериала Крыша мираИз фильма Неоновый демонИз фильма Москва никогда не спитИз фильма Джейн берет ружьеИз фильма Стражи галактикииз фильма ‘Sos, дед мороз или все сбудется’OST ‘Дом странных детей Мисс Перегрин’Из игры Contact WarsИз Фильма АмелиИз фильма Иллюзия обмана 2OST Ледниковый период 5: Столкновение неизбежноИз фильма Из тьмыИз фильма Колония Дигнидадиз фильма ‘Страна чудес’Музыка из сериала ‘Цвет черёмухи’Из фильма Образцовый самец 2из фильмов про Гарри Поттера Из фильма Дивергент, глава 3: За стеной из мультфильма ‘Монстр в Париже’из мультфильма ‘Аисты’Из фильма КоробкаИз фильма СомнияИз сериала Ходячие мертвецыИз фильма ВыборИз сериала Королек — птичка певчаяДень независимости 2: ВозрождениеИз сериала Великолепный векиз фильма ‘Полтора шпиона’из фильма Светская жизньИз сериала Острые козырьки

Где применяется?

В последние десятилетия ультразвуком интересуются не только научные теоретики, но и практики, все более активно внедряющие его в различные виды человеческой деятельности. Сегодня ультразвуковые установки используются для:

Получение информации о веществах и материалах

Мероприятия

Частота в кГц

Исследование состава и свойств веществ

твердые тела

жидкости

Контроль размеров и уровней

Гидролокация

Дефектоскопия

Медицинская диагностика

Воздействия

на вещества

Пайка и металлизация

Пластическое деформирование

Механическая обработка

Эмульгирование

Кристаллизация

Распыление

Коагуляция аэрозолей

Диспергирование

Химические процессы

Воздействие на горение

Хирургия

Обработка и управление сигналами

Акустоэлектронные преобразователи

Линии задержки

Акустооптические устройства

В современном мире ультразвук — это важный технологический инструмент в таких промышленных отраслях, как:

  • металлургическая;
  • химическая;
  • сельскохозяйственная;
  • текстильная;
  • пищевая;
  • фармакологическая;
  • машино- и приборостроительная;
  • нефтехимическая, перерабатывающая и другие.

Кроме этого, все более широко используется ультразвук в медицине. Вот об этом мы и поговорим в следующем разделе.

Применение ультразвука в стоматологии

В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком
. Ультразвук сильно поглощается газами и во много раз слабее — твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны

Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение.
Все это позволяет широко использовать ультразвук в технике

Описанные свойства ультразвука используются в эхолоте — приборе для определения глубины моря (рис. 25,11). Корабль снабжают источником и приемником ультразвука определенной частоты.
Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде, с помощью формулы l = vt/2 определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на пути корабля в горизонтальном направлении
. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например, летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины.

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов
(например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты
), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий — взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волна ми или инфразвуком. Они также не вызывают звуковых ощущений.
Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении. Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

Использование в терапии

Основное лечебное воздействие ультразвука обусловлено его способностью проникать в человеческие ткани, разогревать и прогревать их, осуществлять микромассаж отдельных участков. УЗ может быть использован как для непосредственного, так и для косвенного воздействия на очаг боли. Кроме того, при определенных условиях эти волны оказывают бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. Используемый в терапевтических целях ультразвук условно подразделяют на колебания высокой и низкой интенсивности.

Именно волны низкой интенсивности наиболее широко применяется для стимуляции физиологических реакций или незначительного, не повреждающего нагрева. Лечение ультразвуком дало положительные результаты при таких заболеваниях, как:

  • артрозы;
  • артриты;
  • миалгии;
  • спондилиты;
  • невралгии;
  • варикозные и трофические язвы;
  • болезнь Бехтерева;
  • облитерирующие эндартерииты.

Проводятся исследования, во время которых используется ультразвук для лечения болезни Меньера, язв двенадцатиперстной кишки и желудка, бронхиальной астмы, отосклероза.

Исследование внутренних органов

В основном речь идет об исследовании брюшной полости. Для этой цели используется специальный аппарат. Ультразвук может применяться для нахождения и распознавания различных аномалий тканей и анатомических структур. Задача зачастую такова: существует подозрение на наличие злокачественного образования и требуется отличить его от образования доброкачественного или инфекционного.

Ультразвук полезен при исследовании печени и для решения других задач, к которым относится обнаружение непроходимости и заболеваний желчных протоков, а также исследование желчного пузыря для выявления наличия в нем камней и других патологий. Кроме того, может применяться исследование цирроза и других диффузных доброкачественных заболеваний печени.

В области гинекологии, главным образом при анализе яичников и матки, применение ультразвука является в течение длительного времени главным направлением, в котором оно осуществляется особенно успешно. Зачастую здесь также нужна дифференциация доброкачественных и злокачественных образований, что требует обычно наилучшего контрастного и пространственного разрешения. Подобные заключения могут быть полезны и при исследовании множества других внутренних органов.

Оцените статью:
Оставить комментарий
Adblock
detector