Направление электрического тока
Содержание
Направление движения
Скорость распространения электричества по проводникам очень высока. По заверениям учёных, она приближается к значению, равному распространению света. Но эта скорость не определяет движение самих зарядов. Всё дело в том, что в замкнутой цепи под действием внешней силы свободные частицы взаимодействуют по всей длине тела, поэтому скорость распространения зарядов имеет своё название — дрейфовая.
В какую сторону направлено перемещение положительных зарядов, ту и принимают за направление электрического тока. Но известно, что в металлах электроны выступают как носители, поэтому выбор направления был принят условно. Физики договорились, что ток направлен от плюса к минусу. Это было связано с опытами Франклина, разрабатывающего свою жидкостную теорию. Он увидел, что перетекание в сообщающих сосудах происходит из большей ёмкости в меньшую, то есть из более электризованного места в меньшее.
Например, в полупроводнике можно представить себе цепочку атомов, в которой появился положительный ион. За счёт действия поля произойдёт перемещение электрона от атома, стоящего после частицы к нему. Затем по цепочке носитель заряда начнёт переходить от третьего атома ко второму иону, от четвёртого к третьему. Значит, в полупроводнике ток течёт против поля. Перенос зарядов от атомов, заряженных нейтрально, происходит за счёт движения электронов против действия силовых линий и дырок, совпадающих с ними по направлению.
Свойства веществ изменяются в зависимости от типов примеси. Дырочный механизм может вовсе отсутствовать, а ток будет идти только за счёт свободных электронов. Такие материалы называют электронными. В ином же случае — дырочными. Например, при соединении металла с полупроводником ток может течь как от первого материала ко второму, так и обратно. Это связано с тем, что в электронном полупроводнике из-за избытка отрицательных частиц происходит их диффундирование в металл, а в дырочном — наоборот.
Не существует в металлических проводниках электрического тока, текущего от плюса к минусу
В однофазной системе постоянный ток это движение позитронного тока от плюсовой фазы к нулю или электронного тока от нуля к минусовой фазе. Осциллограммы демонстрирует эту точку зрения.
Переменный ток формируется точно также, только с соблюдением заданной генератором тока очерёдности протекания разноимённых зарядов, называемой частотой переменного тока.
В трёхфазной системе нулевой потенциал переменного тока формируется, когда фазы имеют максимальный положительный или отрицательный потенциалы. А предыдущая и последующая фазы в своих синусоидах в это самое время имеют одноимённые заряды, но с противоположными векторами их движения, которые в сумме рождает нулевой потенциал.
Таким образом, в трёхфазной системе нулевой потенциал может формироваться без нулевого провода, исключительно потому, что заряды рассматриваемой фазы текут: позитроны от плюсовой фазы к нулю или электроны от нуля к минусовой фазе. И текут они исключительно в эфире, окружающем проводники.
Что такое «плюс» и «минус» в электричестве
Электроэнергия приходит в дом по проводам, протянутым от подстанции, которая получает энергию от источника, вырабатывающей ее (гидро-, тепло-, атомной электростанции). В зависимости от необходимого потребления мощности, различают вольтаж. Для крупных промышленных предприятий используют ток в 1000В, любая многоэтажка потребляет много энергии, для работы лифта необходимо 380В, а в квартирах – 220В.
Схема подводки электричества к дому
Иногда, в частных домах может быть использовано напряжение в 380В, если потребление довольно высокое и требует большой мощности. Для таких домов используют кабель в 5 жил (5 проводников). Эту сеть называют трехфазной, где 3 жилы-фазы разветвляются на потребителей, 1 жила – нулевая и 1 жила — заземляющая.
Трехфазный кабель
Важно! Электрический ток всегда движется в одном направлении и для правильной работы ему нужен замкнутый круг. В стандартных квартирах рабочим напряжением является 220В, называется такая сеть однофазной, и в ней используется 2 или 3 проводника
Если в квартиру заведен 3‐х жильный кабель, то, для подключения розеток, рекомендуется использовать все 3 жилы, где 3-я используется для безопасности – заземление. В любом случае, в таком проводе только 1 сердечник под напряжением (фаза – это «плюс» или «минус»)
В стандартных квартирах рабочим напряжением является 220В, называется такая сеть однофазной, и в ней используется 2 или 3 проводника. Если в квартиру заведен 3‐х жильный кабель, то, для подключения розеток, рекомендуется использовать все 3 жилы, где 3-я используется для безопасности – заземление. В любом случае, в таком проводе только 1 сердечник под напряжением (фаза – это «плюс» или «минус»).
Итак, обычный электрический кабель для однофазной сети имеет 2 или 3 жилы:
- Фаза («плюс») — провод, по которому напряжение приходит к электроприбору. Это энергия, на которой работают все электроприборы, освещение.
- Ноль («минус») — провод, по которому ток возвращается. Также, ноль выравнивает фазное напряжение.
- Заземление – нужно для защиты человека от удара электротоком, при повреждении изоляции или неисправности электроприбора.
Однофазный провод
Соединять «плюс» с «минусом» нельзя, произойдет короткое замыкание, что приведет к отсечению электричества автоматическим выключателем или выбиванию пробок.
Важно! Автоматический выключатель не сработает при неисправном электроприборе и потребителя ударит током. Чтобы этого не произошло, используют заземление
Если заземление в доме не предусмотрено, устанавливают УЗО для зашиты человека от поражения электрическим током.
Цветовое и буквенное обозначение
Перед началом монтажных работ электрик должен уточнить обозначения L и N в электрических схемах и обязательно их придерживаться. Государственными нормами в электротехнике установлены обозначения фаза/ноль по ГОСТу Р 50462/2009, обязывающему производителей помещать L-жилы в изоляцию, окрашенную в коричневый или черный цвет, PE-жилы в желто-зеленый. Для N-провода применяют стандартный цвет — сине-голубой либо синее основание с белой полоской.
Цветовое обозначение
Электрическая маркировка наносится независимо от числа жил в пучке. PE- и L-жила могут также отличаться толщиной, первая тоньше, особенно в кабелях, используемых для питания переносного электрооборудования. Специалисты рекомендуют применять одинаковый цвет жил, когда нужно выполнить ответвление одной фазы от 3-фазной. Производители могут применять разнообразную цветную маркировку жил для фазной коммутации по схеме, при этом существует запрет на смежные цвета синему, зеленому и желтому.
Обозначение фаза-ноль
Обозначение фазы и нуля на английском было принято стандартами ЕС и присутствует на всех европейских электроприборах. В 2004 году были внесены изменения в цветовую идентификации проводников как часть поправки стандартов ЕС No 2: 2004 к BS 7671: 2001. В однофазных установках используются традиционные цвета красного и черного для фазы, а нейтральные проводники заменяются цветами коричневого и синего (Правило 514-03-01). Защитные проводники остаются зелеными и желтыми.
Важно! Все устройства после 31 марта 2004 года и до 1 апреля 2006 года могут быть установлены в соответствии с Поправкой No 2: 2004 или Поправкой No 1: 2002, другими словами, они могут использовать гармонизированные цвета или старые цвета, но не оба
Электрический ток. Сила и плотность тока
Электрическим током называется направленное (упорядоченное) движение заряженных частиц.
Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).
За направление электрического тока условно принято направление движения положительно заряженных частиц.
Для существования электрического тока в веществе необходимо:
- наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;
- наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.
Количественными характеристиками электрического тока являются сила тока I и плотность тока j.
Сила тока — скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.
Единицей силы тока в СИ является ампер (А).
Если сила тока и его направление со временем не изменяются, то ток называется постоянным.
Единица силы тока — основная единица в СИ 1 А — есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.
Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.
Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n — концентрация частиц. Их общий заряд \(~\Delta q = q_0 nS \Delta l\).
Если средняя скорость упорядоченного движения свободных зарядов \(~\mathcal h \upsilon \mathcal i\), то за промежуток времени \(~\Delta t = \frac{\Delta l}{\mathcal h \upsilon \mathcal i}\) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.
Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов \(~\mathcal h \upsilon \mathcal i\) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.
Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.
В СИ единицей плотности тока является ампер на квадратный метр (А/м2).
Как следует из формулы (1), \(~\vec j = q_0 n \mathcal h \vec \upsilon \mathcal i\). Направление вектора плотности тока \(~\vec j\) совпадает с направлением вектора скорости упорядоченного движения \(~\mathcal h \vec \upsilon \mathcal i\) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Варианты определения проводников «фаза»/«ноль»
Цветовая окраска проводов, как основной ориентир
Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.
Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:
- защитным нулем стал обозначаться провод желто-зеленого цвета;
- рабочим нулем стали называть синий/сине-белый провод;
- фазу — провода других цветов (например, черного, красного, коричневого и прочие).
Такое обозначение актуально в настоящее время.
Отвертка-индикатор — незаменимое приспособление
Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.
Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.
Элементы отвертки:
- корпус, выполненный из диэлектрического материала;
- наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
- неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
- ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
- контактная металлическая площадка, создающая замкнутую цепь через человека на землю.
Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.
При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.
Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.
Мультиметр — надежный помощник
Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.
Способы определения проводов:
Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.
Использование лампы накаливания
Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.
Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.
Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов. Для измерения напряжения на резисторе \( R_2 \) вольтметр можно включить между точками
1) только Б и В 2) только А и В 3) Б и Г или Б и В 4) А и Г или А и В
2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока
1) меньше 0,5 А 2) больше 0,5 А 3) 0,5 А 4) 0 А
3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.
Проанализировав полученные значения, он высказал предположения:
А. Закон Ома справедлив для первых трёх измерений. Б. Закон Ома справедлив для последних трёх измерений.
Какая(-ие) из высказанных учеником гипотез верна(-ы)?
1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б
4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?
1) 0,25 Ом 2) 2 Ом 3) 4 Ом 4) 8 Ом
5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.
1) \( R_1=R_2 \) 2) \( R_1=2R_2 \) 3) \( R_1=4R_2 \) 4) \( 4R_1=R_2 \)
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения \( U_1 \) и \( U_2 \) на концах этих проводников.
1) \( U_2=\sqrt{3}U_1 \) 2) \( U_1=3U_2 \) 3) \( U_2=9U_1 \) 4) \( U_2=3U_1 \)
7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?
1) А и Г 2) Б и В 3) Б и Г 4) В и Г
8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, а второго проводника 4 мм2. Сопротивление какого из проводников больше и во сколько раз?
1) Сопротивление первого проводника в 64 раза больше, чем второго. 2) Сопротивление первого проводника в 8 раз больше, чем второго. 3) Сопротивление второго проводника в 64 раза больше, чем первого. 4) Сопротивление второго проводника в 8 раз больше, чем первого.
9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?
1) 0,02 А 2) 0,2 А 3) 5 А 4) 50 А
10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения \( S \), длины \( L \) и электрического сопротивления \( R \) для трёх проводников, изготовленных из железа или никелина.
На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника
1) зависит от материала проводника 2) не зависит от материала проводника 3) увеличивается при увеличении его длины 4) уменьшается при увеличении его площади поперечного сечения
11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).
Какой вывод можно сделать на основании проведённых исследований?
1) сопротивление проводника обратно пропорционально площади его поперечного сечения 2) сопротивление проводника прямо пропорционально его длине 3) сопротивление проводника зависит от силы тока в проводнике 4) сопротивление проводника зависит от напряжения на концах проводника 5) сила тока в проводнике обратно пропорциональна его сопротивлению
12. В справочнике физических свойств различных материалов представлена следующая таблица.
Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди. 2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления. 3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы. 4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится. 5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.
Часть 2
13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?