Лампочка тесла и другие факты об этом ученом

Как Тесла зажигал лампочки

У Николы было много изобретений. Однако большинство знает его, потому что Тесла изобрел лампочку. Кроме того, он был удивительным человеком, который умел делать физические трюки. К таким относится и фокус с лампочкой. Тесла зажигал ее в руке посредством пропуска через себя тока высокого напряжения.

Никола является автором многих изобретений, без которых нельзя представить современный мир. В их числе двигатель переменного тока, катушка Теслы, радио, рентгеновские лучи, лампочка Тесла, лазер, плазменный шар и многое другое. Его гениальность и склад ума даже пугали некоторых людей.

Камера Вильсона

Также в «Лунариуме» можно понаблюдать за движением невидимых заряженных частиц при помощи камеры Вильсона. Этот прибор в 1927 году принес своему изобретателю шотландскому физику Чарлзу Вильсону Нобелевскую премию.

Камера Вильсона — это небольшая емкость прямоугольной формы со стеклянной крышкой и поршнем, наполненная парами спирта, эфира или воды. Принцип работы камеры прост и основан на явлении конденсации перенасыщенного пара: заряженная частица, попадая в камеру с паром, сталкивается с молекулами газа и приводит к их ионизации. Пар в камере конденсируется, и из капель конденсата выстраивается белая цепочка, по которой можно проследить траекторию движения частицы.

Камера Вильсона стала одним из первых приборов для регистрации движения частиц и долгое время была единственным инструментом для изучения космических лучей и ядерных излучений.

Работа

С 1881 года Никола Тесла служит инженером в Центральном телеграфе Будапешта. Ему открывается возможность лицезреть некоторые изобретения, а также подумать над воплощением в реальность собственных идей. Именно здесь великий физик представил миру двухфазный электродвигатель переменного тока, названный затем его именем.

Изобретения Николы позволяли передавать энергию на огромные расстояния, питая приборы освещения, например, лампочки. Тесла, однако, уже через год переехал в Париж, чтобы работать у предпринимателя Томаса Эдисона. Его компания занималась строительством электрической станции на железнодорожном вокзале города Страсбурга, мэру которого позже Никола продемонстрирует работу изобретенного им асинхронного электродвигателя.

В 1884 году Тесла уезжает в Америку. Он был обижен тем, что ему не выплатили в Париже обещанную премию. Там он начинает работать инженером, ремонтирующим электродвигатели в очередной компании Эдисона.

Однако последнего начинают раздражать блестящие идеи великого физика. В результате этого между ними завязывается спор на миллион долларов. Николе удалось победить, но Эдисон свел все к шутке и деньги не выплатил. После этого Тесла уволился и стал безработным. Спасением для него стало знакомство с американским инженером Брауном Томпсоном, благодаря которому о юном физике стало узнавать больше людей.

Вторая модель аппарата «Планетарий» и аппарат «Универсариум М9»

Первая модель аппарата «Планетарий» была создана в Германии в начале 20-х годов XX века на заводе Карла Цейса по проекту инженера Вальтера Бауэрсфельда. Небольшие по своим размерам приборы проецировали на куполообразный экран ограниченное число звезд и созвездий, планеты, туманности и Солнце с Луной. Позже более крупные аппараты расширили список небесных объектов — при помощи дополнительных проекторов стало возможным показывать Млечный Путь, демонстрировать восход и закат Солнца и целые фильмы. «Планетарий» служил универсальным прибором для показа звездного неба. Московский планетарий в 1929 году стал 13-м в мире, где была установлена «Модель II» этого аппарата.

Проектор последнего поколения «Универсариум М9» появился в планетарии после большой реконструкции в 2011 году. Шар, состоящий из двух полусфер, установлен сегодня в Большом звездном зале и предназначен для демонстрации полнокупольных фильмов. На полусферах «Универсариума» — проекторы звезд, созвездий и туманностей, которые можно увидеть невооруженным глазом. Новые технологии позволяют рассмотреть более девяти тысяч звезд, появляющихся на куполе-экране. При помощи всех проекторов «Универсариума» точно воссоздают звездное небо, лунные и солнечные затмения, полет комет и метеоритные дожди.

Особенности эксплуатации плазменного шара

Чтобы ваша «плазма» могла приносить вам радость и умиротворение на протяжении многих лет, за ней нужен правильный уход, который предполагает следующее:

  • запрещается класть на лампу разнообразные металлические предметы. Часто, из любопытства, на сферу кладут монетки различного номинала. Даже небольшая монетка может послужить причиной удара током. При этом сама сфера может лопнуть и выпустить наружу уже не столь красивые и безопасные разряды;
  • лампа должна подключаться к сети питания на 220 В. Также для ее питания можно использовать и USB-порт (если имеется такая возможность). Такой разъем можно подсоединить своими руками, если у вас имеется старая модель светильника;
  • время работы лампы не должно превышать более двух часов. Иначе это может привести к перегреву, а это негативным образом скажется на прочности прозрачной колбы и в дальнейшем может привести к нарушению ее герметичности.

Как видите, правила более чем просты и понятны. Главное здесь следить, чтобы дети, которых плазменные разряды будут неизменно притягивать, не повредили сферу с газом и не выпустили «фейерверки» наружу.

Комплектация плазменного светильника

Современные лампы-шары, формирующие у себя внутри плазменные разряды, содержат в себе:

  • сам плазменный светильник. У современных моделей должен иметься разъем для USB. У страх моделей такой разъем можно сделать своими руками, отрезав вилку для розетки и подсоединив к ней USB от старого шнура. Только перед проведением таких работ своими руками убедитесь в том, что USB разъем работает нормально;
  • USB-кабель. Это обязательный элемент всех современных моделей;
  • инструкция по эксплуатации. С помощью инструкции вы сможете выяснить все нюансы и тонкости работы прибора, возможность его починки своими руками, а также другие важные моменты, которые приводят производители.

Набор плазменной лампы

Покупая такой светильник, необходимо обязательно убедиться в исправности лампы (особенно прозрачной сферы). Ее прозрачная часть не должна быть повреждена, покрыта царапинами или трещинами. При их наличии обязательно требуйте замену продукции.
Обычно осветительный прибор имеет следующие технические характеристики:

  • питание – 220 В (стандартное);
  • мощность — 8 Вт;
  • материалы изготовления: пластик, стекло и электронные компоненты.

Технические характеристики лампы должны быть указаны как на упаковке, так и в инструкции к ней.
Приобретая плазменный светильник нужно знать, что диаметр его сферической колбы может варьироваться в достаточно широком диапазоне (от 8 до 20 см).

Глобус Яна Гавелия

Одним из самых известных небесных глобусов, представляющих собой карту звездного неба, считается глобус польского астронома и конструктора телескопов XVII века Яна Гавелия. Самый известный его труд, дошедший до наших дней, — «Уранография», посмертно изданный атлас звездного неба, состоящий из 56 карт. Созвездия на картах Гавелий изображал в зеркально перевернутом виде — будто глядя на них из точки за пределами небесной сферы.

Его рисунки-гравюры и перевернутые карты стали основой для создания небесного глобуса с 54 созвездиями и 1564 звездами из собственного каталога астронома. Гавелий поместил на глобус как ранее известные Большую и Малую Медведицы, Козерога и Дракона, так и открытые самостоятельно созвездия Мухи, Ящерицы и Единорога.

Для Московского планетария глобус Яна Гавелия был изготовлен в 1983 году. Большой золотой шар, демонстрирующий все звезды и созвездия, известные астрономам XVII века, сегодня является главным украшением музея Урании.

Плазменный шар

Первый плазменный шар изобрел в 1894 году Никола Тесла. Конструкция под названием «Электрический источник света» выглядела как лампа, состоящая из стеклянной колбы с одним электродом. Современный вид плазменному шару придал ученый и изобретатель Джеймс Фалк, который в 1970-х годах создавал необычные светильники для музеев и частных коллекционеров.

Плазменный шар, или плазмабол, представляет собой конструкцию из стеклянной сферы с разреженным инертным газом и электродом внутри. Когда на электроды подается напряжение с частотой примерно 30 килогерц, начинается процесс ионизации газа и рождается плазма — яркие газовые разряды в виде молний.

Волшебство плазменного шара начинается во время прикосновения к прибору. Молнии, находящиеся внутри, сразу устремляются к месту, где находится рука человека — яркие ленты электричества притягиваются к телу, выступающему в этот момент проводником тока. Разряды могут быть разных цветов, если в шаре используют смесь нескольких газов. Во время работы плазменного шара воздух вокруг ионизируется — если поднести к шару люминесцентную лампу, она тоже будет светиться.

Увидеть плазмабол в действии можно в «Лунариуме».

Маятник Фуко

Идея продемонстрировать вращение Земли с помощью маятника принадлежит французскому астроному и физику Жану Бернару Леону Фуко. В 1851 году в парижском Пантеоне он показал эксперимент с металлическим шаром, подвешенным к вершине купола на стальную проволоку. Каждый раз, когда маятник совершал колебание, он оставлял новый след на песчаной дорожке у края ограждения. Через 32 часа маятник сделал полный оборот и вернулся в исходную точку, доказав факт вращения планеты вокруг собственной оси. За опыт с маятником Фуко вручили высшую награду Франции — орден Почетного Легиона.

Самый большой в России маятник Фуко установлен в «Лунариуме» Московского планетария. Шар весом в 50 килограммов, висящий на 16-метровой нити, раскачивают над лимбом-шкалой и оставляют колебаться в одной плоскости. На бортик у края ставят фигурку, которую позже шар должен будет задеть. Пока маятник колеблется, его основание продолжает свое вращение вместе с Землей, так что фигурка через какое-то время оказывается на пути шара, и он ее сбивает.

Особенности строения плазменного светильника

Плазменная лампа-шар представляет собой специфический светильник. Плафон светильника круглый и прозрачный, а внутри сферы происходит настоящая «магия». Из центра лампы к периферии прозрачного плафона отходят многочисленные плазменные разряды, которые завораживают своими яркими переливами и изгибами, которые не поддаются прогнозам и кажется, что они живут своей собственной жизнью. Можно сказать, что внешне такая лампа похожа на шар предсказаний цыганской гадалки, дающим наставления тем, кто может их прочесть.

Плазменная лампа в качестве ночника

Благодаря такому необычному и магическому внешнему виду такая вот «плазма» даст многое:

  • придаст атмосферу загадочности и необычности;
  • станет экзотическим дизайнерским элементом;
  • светильник способен своей работой нормализовать психическую деятельность человека, снять стресс и усталость;
  • да и в целом это станет оригинальной изюминкой интерьера, которую можно встретить далеко не в каждом доме или квартире.

Стоит отметить, что в отличие от стандартных осветительных приборов, плазменная лампа-шар станет необычным и оригинальным подарком на день рождения.
Итак, плазменная лампа представляет собой прозрачный шар на подставке, внутри которого бьются энергетические разряды. Они способны реагировать на прикосновения человека к прозрачной сфере или даже голосу.

Реакция лампы на прикосновение

При прикосновении к такой лампе разряды внутри нее начинают концентрироваться и «бить» в место, к которому притронулся палец. Это очень красивое зрелище, которое способно завораживать на долгие часы.
Этот предмет больше похож на элемент фантастического фильма, нежели на светильник. Для получения такого эффекта используются современные технологии, что позволяет добиться высокого качества данной осветительной продукции.

Лампа с разрядами и интерьер

Установка плазменного светильника в доме или квартире будет отличным решением по следующим причинам:

  • лампа имеет компактные размеры и хорошо впишется как на полку, так и на журнальный столик;
  • возможность декорирования внешнего вида прибора расширяет перечень стилей, в которые он сможет гармонично вписаться, не нарушив общий замысел;
  • это отличный ночничок, который способен создать атмосферу таинственности и сказки;лампа способствует снятию раздражения, усталости и стрессов.

Плазменная лампа-шар и дети

Несмотря на то, что это очень красивый и практичный ночник, в детской размещение такого прибора не рекомендуется, так как из-за подвижных игр дети могут повредить его стеклянную часть и порезаться. Лучшим решением будет размещение лампы на специальной полке и выставление ее на стол для выполнения функции ночника уже в вечерние часы. Таким образом, вы и порадуете своего ребенка, и убережете его от травм.
Кроме детской, подобный светильник станет оригинальным решением для спальни или гостиной. Наиболее подходящими стилями для размещения такой лампы будет «хай-тек», «эклектика», «минимализм», «классика». При этом «хай-тек», как наиболее приближенный стиль к тесловским творениям, будет самым лучшим решением. В стиле «ретро» такая лампа также займет свое достойное место.

Интерьер в стиле хай-тек

А вот для других стилей (например, «ампир», «готика» и т.д.) необходимо дополнительная стилизация светильника.
Помните, цвет свечения разрядов стоит выбирать под цвет стен, потолка и мебели. Например, на фоне кофейных стен фиолетовые вспышки будут смотреться просто отлично.
Кроме этого плазменная лампа отлично впишется ориентальный дизайн, где превалируют темные цвета отделки стен, мебели, штор и занавесок.

Принцип работы плазменного шара

Плазменная лампа-шар в своей сердцевине имеет электрод, который и позволяет ей создавать плазменные разряды внутри прозрачной сферы. Принцип работы устройства заключается в следующем:

  • высокое переменное напряжение, характеризующееся частотой примерно в 30 кГц, попадает на электрод;
  • сфера лампы внутри содержит разреженный газ;

Вариант цвета плазменного разряда лампы

благодаря попаданию на электрод напряжения в парах газа и формируются плазменные разряды.

Сам светильник, работающий по такому принципу, будет потреблять мало электроэнергии (примерно 5-10 Вт). Поэтому если с ним правильно обращаться, то он прослужит десятилетия. О том, как за таким прибором следует следить, мы поговорим в следующем разделе.

Телескопы Галилео Галилея и Исаака Ньютона

Кто придумал телескоп, сказать сложно, даже дату его изобретения можно назвать лишь примерную — начало XVII века. В 1608 году голландский очковый мастер Иоганн Липперсгей представил «зрительную трубу» для разглядывания удаленных объектов. Получить патент он не сумел: выяснилось, что подобными трубами несколькими годами ранее уже обладали его соотечественники Захарий Янссен и Якоб Метиус. Кроме того, чертежи простейших телескопов с одной и двумя линзами были найдены в записях Леонардо да Винчи, сделанных за сто лет до этого. Гений Возрождения предполагал, что с помощью такого прибора можно будет рассмотреть Луну.

На практике первым оптический прибор направил в звездное небо Галилео Галилей, который в 1609 году создал свою версию оптической трубы с трехкратным увеличением. В трубе использовалась система двух линз, одна из которых собирала свет, а вторая — рассеивала. Великий итальянский ученый позже разработал метровый телескоп, дававший 32-кратное увеличение, но при этом значительно искажавший цвета. Название «телескоп» изобретению Галилея дал греческий математик Иоаннис Димисианос в 1611 году.

Более совершенную систему зеркальных телескопов-рефлекторов придумал Исаак Ньютон. Первый прибор, в котором главным светособирающим элементом стало вогнутое зеркало, английский физик построил в конце 1668 года. Телескоп Ньютона работал по следующей схеме: свет, попав в трубу на главное зеркало, направлялся на плоское диагональное зеркало, находящееся около фокуса. Оттуда он выходил за пределы трубы, и полученное изображение можно было рассмотреть через окуляр и даже сфотографировать. Рефлектор Ньютона точно передавал цвет, был намного легче устройства Галилея и мог отражать ультрафиолетовые лучи.

Небольшой телескоп-рефлектор Ньютона, воссозданную копию телескопа Галилея и многие современные модели телескопов можно увидеть в зале музея Урании.

Оцените статью:
Оставить комментарий
Adblock
detector