Резонанс
Содержание [убрать]
- 1 Явление — резонанс
- 2 Механические колебания маятника
- 3 Марш по мосту
- 4 В чем польза или вред явления
- 5 Типы явления
- 6 В чем заключается явление резонанса напряжений
- 7 Использование резонанса напряжений для передачи радиосигнала
- 8 Как правильно рассчитать
- 9 Реактивные сопротивления индуктивности и емкости
- 10 Резонанс тока в электрических цепях
- 11 Признаки явления
- 12 Что такое резонанс
- 13 Явление резонанса в жизни и в технике.
Явление — резонанс
Явление резонанса в цепи, содержащей нелинейные элементы, имеет существенные особенности. Рассмотрим резонанс в последовательной цепи, содержащей нелинейную емкость.
Явление резонанса часто имеет значение для нагрузки, так как внезапные изменения тока нагрузки также возбуждают резонанс. Это регулируется ( не всегда успешно) посредством выходного сопротивления нагрузки и сопротивления дросселя. Нагрузка будет получать резонансное напряжение, а не резонансный ток, создаваемый выпрямителями. Резонанс трудно подавить, и он может иногда вызывать нарушение действия питаемого от него стабилизатора напряжения при переходных явлениях в токе нагрузки.
Явление резонанса в электрической цепи обеспечивает возможность радиосвязи и используется при настройке радиоприемников на частоту той или иной радиостанции.
Явление резонанса нередко служит причиной поломки коленчатых валов. Для прочности корпуса судна, который также обладает определенным числом свободных колебаний, явление резонанса также может быть опасным.
Явления резонанса возникают в цепях переменного тока при равенстве индуктивного и емкостного сопротивлений или при равенстве индуктивной и емкостной проводимости. В этих случаях контур по отношению внешней цепи является безиндуктивным, как бы состоящим из одного активного сопротивления.
Явление резонанса имеет место в турбинных лопатках и в лопастях вентиляторов и пропеллеров в тех случаях, когда по длине лопатки или лопасти ( от ступицы до края) укладывается четверть звуковой волны.
Явление резонанса широко используется в различных устройствах радиоэлектроники и электротехники. Режим резонанса в цепи из R -, L — и С-элементов состоит в том, что при некоторых значениях частоты, называемых резонансными частотами, входное сопротивление ( или проводимость) становится чисто резистив-ным — с нулевой реактивной составляющей, так, что напряжение и ток на входе цепи совпадают по фазе.
Явление резонанса может проявляться в лопатках ГТД, в лопастях воздушных винтов и вентиляторов в тех случаях, когда по длине лопатки или лопасти ( от ступицы до края) укладывается четверть звуковой волны.
Явление резонанса и вместе с этим разжижение цементного геля наблюдается только в том случае, когда за время установления вынужденных колебаний резонаторов внешнее гармоническое воздействие не прекращается и его динамические параметры не изменяются.
Явление резонанса в электрических цепях весьма широко используется в современной электротехнике, и особенно в технике высокой частоты.
Явление резонанса используется в радиотехнике для измерения частоты колебаний или отвечающей ей длины электромагнитной волны с помощью измерительных приборов, называемых волномерами. Волномер содержит колебательный контур с градуированными индуктивной катушкой и конденсатором и прибором, указывающим ток в контуре. Колебательный контур волномера связывается индуктивно с контуром устройства, в котором необходимо измерить частоту тока. При плавном изменении емкости волномера добиваются максимума тока в контуре волномера и по значению индуктивности и емкости контура волномера судят о частоте.
Явление резонанса широко используется и в других электроизмерительных устройствах, а также в устройствах электроавтоматики.
Явление резонанса наиболее ярко проявляется при малом значении коэффициента затухания и возникает на частотах, близких к частоте собственных колебаний звена ш0 — ЦТ.
Явление резонанса используется для выделения из сложного напряжения нужной составляющей.
Явление резонанса в механизмах передвижения возникает не только при частоте вращения, равной пкр, но и при частоте, кратной критической частоте.
Механические колебания маятника
Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.
Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.
А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.
Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.
Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.
В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.
Марш по мосту
В учебниках по физике приводится пример обвала Египетского моста через Фонтанку в Санкт-Петербурге. История относится к 1906 году. Конструкция подверглась двойному внешнему воздействию. Сначала по ней прошел кавалерийский отряд. Чуть позже мост обвалился после ритмично прошагавшего по нему полка пехоты.
Египетский мост, Санкт-Петербург. Фото: ru.wikipedia.org
В первом случае крепления расшатались под воздействием лошадиных копыт. Пехота раскачала, как качели, ослабевшие опоры моста дружным шагом в ногу. Этим она довершила начатое кавалерией разрушение.
Известны другие случаи обрушения мостов в других странах мира. Сегодня военным запрещено идти в ногу по мостам любой сборки и конструкции, даже самым современным и надежным объектом. Общепринятой командой перед входом на мост является: «Вольно!». Солдаты идут по переправе не в ногу. При свободном передвижении частота шагов солдат не совпадет с частотой колебаний мостовых креплений. Не возникает дополнительная вибрация. Конструкция не подвергается дополнительному внешнему воздействию.
В чем польза или вред явления
Примеров, где используется явления резонанс, множество. Звуковая волна – это колебания воздуха. Инструменты имеют возможность звучать красиво в случае, если размеры, очертания и материал приведут к созданию условий для резонанса. Все духовые, язычковые инструменты звучат благодаря совпадению звуковых частот.
При проектировании и возведении концертных залов используют эффект акустического резонанса. Звучание музыки, голосов артистов полностью зависит от свойств колебательных движений. Древние зодчие Средневековья отлично владели искусством строительства сооружений с сильным акустическим эффектом. В соборе Святого Павла (Лондон) есть галерея, где любой звук или шепот слышен отчетливо.
В горной промышленности при разрушении или дроблении твердых пород применяют метод резонансного разрушения. Это позволяет выполнять большой объем в сжатые сроки с большой эффективностью. Сверление отверстий в бетонных конструкциях облегчает дрель с функцией перфоратора.
Резонанс, как и любое другое физическое явление, сам по себе не является ни плохим, ни хорошим, так как может приносить как пользу, так и вред. Например, именно резонанс помогает вытащить автомобиль, застрявший в грязи или снегу – планомерное раскачивание авто, то взад, то вперед с увеличением амплитуды колебаний помогает освободить его из плена.
А вот хрестоматийный негативный пример действия резонанса описан в самом начале нашей статьи, и связан с мостами. Если рота солдат строевым шагом пройдет по мосту, то может если и не обрушить его, то значительно повредить, потому, что вызовет сильный резонанс собственных колебаний поверхности моста с колебаниями от марша «нога в ногу» сотен солдат.
С тех пор технологии строительства мостов претерпели значительные изменения, а инженеры, конструкторы и архитекторы при проектировании своих объектов обязательно принимают в расчет явление резонанса. Этот феномен необходимо учитывать не только при строительстве мостов, но и при возведении высотных зданий, антенн, высоких опор, словом всего того, что теоретически может войти в резонанс с воздушными потоками.
Типы явления
В описании резонанса Г
Галилей как раз обратил внимание на самое существенное — на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы
Механический и акустический
Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.
Электрический резонанс
Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.
Оптический резонанс
Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн
. Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.
Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.
Орбитальные колебания
В космической механике возникает орбитальный отклик
, когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.
При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.
Атомный, частичный и молекулярный
Ядерный магнитный резонанс (ЯМР)
— это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).
В чем заключается явление резонанса напряжений
Как известно, в сети переменного тока домашней сети разность потенциалов изменяется с частотой 50 Гц. То есть, каждую секунду производится 50 полных колебаний. Такое явление несложно замерить даже бытовым частотомером, который определить точное значение этого параметра именно по эффекту электромагнитного поля, образованного вокруг проводника с током. Катушка с металлическим сердечником, которая устанавливается в измерительный прибор, будет колебаться с частотой электромагнитного поля домашней электросети.
Частотомер
Таким образом, вырабатывается переменное напряжение, которое затем может быть увеличено, а его частота подсчитана микропроцессорным либо аналоговым устройством, после чего информация может быть выведена на экран.
Разобравшись, в чем заключается явление резонанса электрического напряжения, необходимо стараться всячески избегать этого явления, когда одновременные колебательные движения полей являются нежелательными. Если же в каком-либо устройстве такой эффект применяется с целью получения определенных физических явлений, то схема должна быть изготовлена с высокой добротностью, чтобы на поддержание процесса тратилось как можно меньше энергии (таким образом повышается КПД устройства).
Использование резонанса напряжений для передачи радиосигнала
Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций – радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает электромагнитные волны на несущей частоте.
Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.
После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.
Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.
Частотная модуляция или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется «модулятор» и используется с передатчиком.
Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.
Как правильно рассчитать
Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети
Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения. При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.
Формула расчета
Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.
Формула резонансных кривых
Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.
Расчет колебательного контура
Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов
В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной. Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC. Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Резонанс тока в электрических цепях
Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.
В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.
Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.
Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.
Колебания электрического тока внутри контура возникает под действием внешнего источника электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.
Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.
Пример электрического резонанса в процессе настройки ТВ и радиоприемников
В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.
Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.
В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.
Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.
Признаки явления
Базовый показатель резонанса — когда реактивные сопротивления одинаковые, то есть AA = AB. Тогда ток не разветвленной части контура отсутствует, а в каждой отдельно взятой из ветвей будет протекать ток с максимальной амплитудой, и наступает обсуждаемое явление.
В ходе изысканий ученые пришли к выводу, который кажется очень странным. Действительно, генератор нагружают двумя реактивными нагрузками, а ток в не разветвленной его части отсутствует, более того, через каждую из них протекают ток равной силы и с максимальной амплитудой токи. Объяснить такое явление можно удивительными свойствами магнитных полей на индуктивных нагрузках и свойствами электрического поля емкости.
При явлении резонанса происходит обмен энергетическими колебаниями между этими полями в индуктивности и емкости. Генерирующая установка, передав энергию в контур, оказывается как бы «не у дел». Его даже можно совсем выключить, а ток в этой части контура будет поддерживаться без генератора, таким, как и был в самом начале. А напряжение останется точно таким, какое было подано с генератора.
Что такое резонанс
Резонанс – это колебательный отклик системы на внешнее воздействие, которое сопровождается резкими амплитудными движениями. Происходит от французского «resonance» — отзываться. Люди используют понятие в разных областях деятельности:
1. Наука и техника
Первым на резонанс обратил внимание средневековый ученый Торичелли. Галилео Галилей дал точное определение резонансу на примере струн и работы маятника
Основоположник современной электродинамики Джеймс Максвелл объяснил, что такое электромагнитный резонанс.
Разрушенный в 1850 году французский мост через реку Луара. Фото: ru.wikipedia.org
2. Риторика и полемика. В сфере гуманитарных наук понятие определяет отклик общественности на явления, происшествие или высказывание. Слово помогает повысить значимость происходящего. Критики часто употребляют фразу: «Картина (пьеса, книга, стиль) вызвала положительный (отрицательный) резонанс у публики». Явление может стать бестселлером или полностью провалиться.
3. Летное дело. Летчики опасаются воздушной разновидности резонанса флаттера. Попадая в зону турбулентности не очень крепкие машины могут развалиться в воздухе.
Люди встречаются с резонансом в повседневной жизни. Обычные качели демонстрируют механический резонанс. Разогревая еду в микроволновке, человек сталкивается с его электромагнитной разновидностью. Акустический резонанс встречается в горах на примере эха или в комнатах с плохой звукоизоляцией. В строительных работах всегда учитывается процент возможного резонанса. В противном случае высотные здания, ЛЭП-опоры, принимающие и передающие антенны подвергнутся воздействию порывов ветра, которые расшатают их и разрушат.
Явление резонанса в жизни и в технике.
Явление резонанса
может играть как положительную, так и отрицательную роль.
Известно, например, что тяжелый «язык» большого колокола может раскачать даже ребенок, но при условии, что будет тянуть за веревку в такт со свободными колебаниями «языка».
На применении резонанса основано действие язычкового частотомера. Этот прибор представляет собой набор укрепленных па общем основании упругих пластин различной длины. Собствен-ная частота каждой пластины известна. При контакте частотомера с колебательной системой , частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.
С явлением резонанса можно встретиться и тогда, когда это совершенно нежелательно. Так, на-пример, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи ко-лебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.
В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.
В 1906 г. из-за резонанса разрушился Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.
Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу», идти не строевым, а вольным шагом.
Если же через мост проезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).
Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.
Явление резонанса встречается не только на суше, но и в море, и даже в воздухе. Так, например, при некоторых частотах гребного вала в резонанс входили целые корабли. А на заре разви-тия авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.
Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.