Как работает усилитель класса d, или не такой как все

Инструментальный усилитель

Инструментальные усилители (in-amps) — это дифференциальные усилители с очень высоким коэффициентом усиления, которые имеют высокий входной импеданс и однополярный выход. Приборные усилители в основном используются для усиления очень малых дифференциальных сигналов от тензодатчиков, термопар или датчиков тока в системах управления двигателем.

В отличие от стандартных операционных усилителей, в которых их усиление с обратной связью определяется внешней резистивной обратной связью, подключенной между их выходной клеммой и одной входной клеммой, положительной или отрицательной, «инструментальные усилители» имеют внутренний резистор обратной связи, который эффективно изолирован от своих входных клемм, как входной сигнал подается на два дифференциальных входа, V1 и V2 .

Инструментальный усилитель также имеет очень хороший коэффициент подавления синфазного сигнала, CMRR (нулевой выход, когда V 1 = V 2 ), значительно превышающий 100 дБ при постоянном токе. Типичный пример инструментального усилителя с тремя операционными усилителями с высоким входным сопротивлением (  Zin  ) приведен ниже:

Два неинвертирующих усилителя образуют дифференциальный входной каскад, выступающий в качестве буферных усилителей с усилением 1 + 2R2 / R1 для дифференциальных входных сигналов и единичным усилением для синфазных входных сигналов. Поскольку усилители А1 и А2 являются усилителями отрицательной обратной связи с обратной связью, можно ожидать, что напряжение на Va будет равно входному напряжению V1 . Аналогично, напряжение на Vb должно быть равно значению на V2 .

Поскольку операционные усилители не принимают ток на своих входных клеммах (виртуальное заземление), один и тот же ток должен протекать через сеть трех резисторов R2 , R1 и R2, подключенных к выходам операционного усилителя. Это означает, что напряжение на верхнем конце R1 будет равно V1, а напряжение на нижнем конце R1 будет равно V2 .

Это приводит к падению напряжения на резисторе R1, которое равно разности напряжений между входами V1 и V2 , дифференциальному входному напряжению, потому что напряжение на суммирующем соединении каждого усилителя Va и Vb равно напряжению, приложенному к его положительным входам.

Однако, если синфазное напряжение подается на входы усилителей, напряжения на каждой стороне R1 будут равны, и через этот резистор ток не будет течь. Поскольку ток не протекает через R1 (и, следовательно, через оба резистора R2 , усилители А1 и А2 будут работать как последователи с единичным усилением (буферы). Поскольку входное напряжение на выходах усилителей А1 и А2 по- разному проявляется в сети с тремя резисторами дифференциальное усиление схемы можно изменить, просто изменив значение R1 .

Выходное напряжение дифференциального операционного усилителя A3, действующего как вычитатель, представляет собой просто разницу между его двумя входами ( V2 — V1 ) и усиливается коэффициентом усиления A3, который может равняться единице (при условии, что R3 = R4 ). Тогда у нас есть общее выражение для общего усиления по напряжению схемы измерительного усилителя.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.
Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.

А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.
Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.
В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”.  В этом случае “минус” батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

УПТ типа модулятор — демодулятор

Усиление сигнала в таких УПТ производится с помощью усилителя переменного сигнала, который принципиально не имеет дрейфа нуля. Для преобразования входного сигнала постоянного тока (напряжения) в переменный на входе усилителя переменного сигнала устанавливается модулятор — устройство, которое с помощью ключей, коммутируемых с частотой много большей максимальной частоты в спектре усиливаемого сигнала преобразует входной постоянный сигнал в относительно высокочастотное напряжение, причем амплитуда этого переменного сигнала прямо пропорциональна входному постоянному сигналу. Простейший модулятор — ключ, периодически отключающий источник сигнала от входа усилителя переменного сигнала. При замкнутом состоянии ключа на вход усилителя переменного сигнала подается напряжение входного сигнала постоянного тока, при разомкнутом состоянии ключа входной сигнал этого усилителя нулевой.

Управление ключом или ключами модулятора производится вспомогательным генератором.

Переменное напряжение от модулятора усиливается усилителем переменного сигнала (напряжения) до необходимого уровня. На выходе усилителя переменного сигнала присутствует переменное напряжение, амплитуда которого пропорциональна входному сигналу. Переменное напряжение преобразуется снова в постоянное выходное напряжение с помощью демодулятора. В качестве демодулятора применяют какой-либо выпрямитель переменного сигнала, например, диодный. Но часто выпрямитель выполняют в виде синхронного детектора — ключа или нескольких ключей, коммутируемых синхронно с ключом модулятора и управляемых от того же генератора. Простейший синхронный детектор — ключ между выходом усилителя и нагрузкой, который замкнут при, например, каждой положительной полуволне переменного напряжения выхода усилителя и разомкнут в остальное время.

В качестве ключей в УПТ с МДМ ранее использовались электромеханические ключи — обычные контактные пары, например, вибропреобразователи. Сейчас электромеханические ключи практически полностью вытеснены бесконтактными полупроводниковыми ключами, обычно полевыми транзисторами.

В УПТ МДМ основной вклад в дрейф вносит модулятор, вклад остальных устройств невелик. Например, в электромеханических модуляторах дрейф составляет — единицы  мкВ, в бесконтактных модуляторах — доли мкВ.

Дрейф нуля УПТ

Особенностью многокаскадных УПТ, не использующих модулятор на входе и демодулятор на выходе — это УПТ типа М-ДМ, является непосредственная связь между каскадами, то есть между каскадами не включаются разделительные конденсаторы или трансформаторы, не пропускающие сигналы с низкими частотами, в частности, сигналы постоянного тока. Для таких УПТ характерен «дрейф нуля» — медленное систематическое или медленное хаотическое изменение выходного сигнала при неизменном входном сигнале.

Количественно дрейф нуля принято выражать приведённым ко входу усилителя, то есть дрейфу выходного сигнала делённому на коэффициент усиления усилителя. Часто указывается дрейф от влияющего фактора, например, от температуры, в этом случае приведённый ко входу дрейф относят к единице измерения влияющего фактора, например, мкВ/К (температурный дрейф), мкВ/сутки (временной дрейф) и т. д.

Дрейф нуля принципиально неустраним в УПТ с непосредственными связями, разными мерами можно только его уменьшить. Причинами, вызывающими дрейф нуля являются:

  • Изменения температуры (температурный дрейф) и влажности окружающей среды.
  • Нестабильности источников питания.
  • Старение электронных компонентов, вызывающее изменение их электрических параметров.
  • Низкочастотные собственные шумы усилителя.

Для снижения дрейфа нуля стремятся исключить влияние внешних факторов — герметизацией, термостатированием, использования стабильного питания, применения искусственно состаренных компонентов и др. Наиболее весомый вклад в дрейф обычно температурный.

Основной вклад в дрейф нуля вносит входной каскад, вклад последующих каскадов в дрейф нуля обычно мал. Для снижения дрейфа входного каскада часто применяют дифференциальные (балансные) входные каскады. Дифференциальное включение активных компонентов позволяет существенно снизить влияние температуры и других влияющих на дрейф факторов, так как при равенстве величины и знака изменения параметров активных компонентов в дифференциальной схеме уход параметров взаимно компенсируется, так как влияют на выходной сигнал с разными знаками и в идеале — равными по модулю.

Температурный дрейф современных прецизионных УПТ с непосредственными связями, например прецизионных операционных усилителей порядка единиц — десятков мкВ/К.

Очень эффективный способ борьбы с дрейфом нуля является применение УПТ построенных по схеме модулятор — усилитель переменного сигнала — демодулятор сокращенно называемые УПТ типа МДМ или М-ДМ.

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

где

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е.  Rвх >>Rи  и Rн намного больше, чем Rвых    (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых.  Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

где KI   – коэффициент усиления по току

Iвых  – сила тока в цепи нагрузки, А

Iвх  – сила тока во входной цепи Eи —>Rи —>Rвх , А

Смысл работы усилителя тока такой:  при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а  значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх  пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим,  у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А  усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых  при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ  мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

где

P – мощность, Вт

I – сила тока, А

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

где

KP – коэффициент усиления по мощности

Pвых  – мощность на выходе усилителя, Вт

Pвх  – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Оцените статью:
Оставить комментарий
Adblock
detector