Усилитель низкой частоты (унч) на микросхеме tda7250

Мощный усилитель звука своими руками

Радиолюбитель, собирающийся сделать систему низкой частоты (УНЧ), должен решить ряд следующих вопросов:

  • Элементная база
  • Электрические параметры
  • Выбор схемы

Современные звуковые системы собираются с применением биполярных или полевых транзисторов и интегральных микросхем. Такие конструкции не требуют высокого напряжения в цепях питания, достаточно компактны и обеспечивают хороший диапазон воспроизводимых частот и низкий процент искажений. Звуковая аппаратура высшего класса собирается на электронных лампах, которые в серийной технике не применяются уже давно. Электрические параметры зависят от того, для какой цели будет использоваться УНЧ. Конструкция, предназначенная для подключения к планшету или компьютеру, не предполагает высокого качества воспроизведения звука.

Для специалиста будет просто собрать своими руками аудио усилитель, обеспечивающий достаточно высокие параметры. В такой конструкции можно использовать мощные транзисторы или микросхемы. Блок может быть предназначен для работы с устройствами, которые выдают мощный выходной сигнал. Тогда предварительный каскад не требуется и достаточно собрать только оконечник. Если устройство предназначено для работы с микрофоном, проигрывателем виниловых дисков или электрогитарой, то придётся собирать полный тракт с предварительным каскадом и регулировками тембра. Оконечный усилитель мощности своими руками можно проще всего собрать на интегральной микросхеме. Такая конструкция собирается на простейшей печатной плате, не требует регулировок, налаживания и при правильной сборке сразу начинает работать.

Конструкция обеспечивает выходную мощность до 20 ватт на канал, работает от напряжения от 10 до 18 В, поэтому может быть использована в автомобиле. Такая мощность обеспечивается при использовании микросхемы TDA1557. Корпус TDA8560Q может выдать до 30 ватт в каждом канале. Для более стабильной работы конструкции при воспроизведении низких частот рекомендуется в фильтре питания использовать 5, соединённых параллельно емкостей по 2200 мкф. Корпус микросхемы сильно нагревается, поэтому её нужно установить на радиатор. Чтобы собрать усилитель звука для колонок своими руками потребуется тестер и паяльник. Осциллограф и генератор для простых схем не используются.

Рекомендации

Несмотря на свою простоту данный усилитель достаточно неплохо раскачивает колонки на подобие Radiotehnika S-30, при этом питание усилителя составляет 12-14В, что вполне подходит для конструирования несложного мостового автомобильного усилителя мощности.

Рис. 7. Фото готового блока усилителя НЧ на микросхеме TDA2005 вместе с радиатором.

Микросхема в процессе своей работы выделяет достаточно много тепла, поэтому позаботьтесь о хорошем ее охлаждении. Небольшой радиатор от микропроцессора с вентилятором или же более массивный радиатор для пассивного охлаждения будет в самый раз.

Даташит на микросхему TDA2005, TDA2005R — Скачать (630 КБ).

Детали для усилителя мощности

Расскажу подробнее об особенностях деталей усилителя. Перечень радиодеталей для сборки схемы:

Название Количество, шт Примечание
TDA7250 1  
КТ825 2  
КТ827 2  
     
1,5 кОм 2  
390 Ом 4  
33 Ом 4 мощностью 0,5Вт
0,15 Ом 4 мощностью 5Вт
22 кОм 3  
560 Ом 2  
100 кОм 3  
12 Ом 2 мощностью 1Вт
10 Ом 2 мощностью 0,5Вт
2,7 кОм 2  
100 Ом 1  
10 кОм 1  
     
100 мкФ 4 электролитический
2,2 мкФ 2 слюдяной или пленочный
2,2 мкФ 1 электролитический
2,2 нФ 2  
1 мкФ 2 слюдяной или пленочный
22 мкФ 2 электролитический
100 пФ 2  
100 нФ 2  
150 пФ 8  
4,7 мкФ 2 электролитический
0,1 мкФ 2 слюдяной или пленочный
30 пф 2  

Катушки индуктивности на выходе УМЗЧ наматываются на каркасе диаметром 10мм и содержат по 40 витков эмалированного медного провода диаметром 0,8-1мм в два слоя (по 20 витков на слой). Чтобы витки не распадались их можно скрепить плавким силиконом или клеем.

Конденсаторы С22, С23, С4, С3, С1, С2 должны быть рассчитаны на напряжение 63В, остальные электролиты — на напряжение от 25В. Входные конденсаторы С6 и С5 — неполярные, пленочные или слюдяные.

Резисторы R16-R19 должны быть рассчитаны на мощность не менее 5Ватт. В моем случае применены миниатюрные цементные резисторы.

Сопротивления R20-R23, а также RL можно устанавливать мощностью от 0,5Вт. Резисторы Rx — мощностью не менее 1Вт. Все остальные сопротивления в схеме можно ставить мощностью от 0,25Вт.

Пары транзисторов КТ827+КТ825 лучше подбирать с наиболее близкими параметрами, например:

  1. КТ827А (Uкэ=100В, h21Э>750, Pк=125Вт) + КТ825Г (Uкэ=70В, h21Э>750, Pк=125Вт);
  2. КТ827Б (Uкэ=80В, h21Э>750, Pк=125Вт) + КТ825Б (Uкэ=60В, h21Э>750, Pк=160Вт);
  3. КТ827В (Uкэ=60В, h21Э>750, Pк=125Вт) + КТ825Б (Uкэ=60В, h21Э>750, Pк=160Вт);
  4. КТ827В (Uкэ=60В, h21Э>750, Pк=125Вт) + КТ825Г (Uкэ=70В, h21Э>750, Pк=125Вт).

В зависимости от буквы в конце маркировки у транзисторов КТ827 меняются только напряжения Uкэ и Uбэ, остальные же параметры идентичны. А вот транзисторы КТ825 с разными буквенными суффиксами уже разнятся многими параметрами.

Рис. 4. Цоколевка мощных транзисторов КТ825, КТ827 и TIP142, TIP147.

Используемые в схеме усилителя транзисторы желательно проверить на исправность. Транзисторы Дарлингтона КТ825, КТ827, TIP142, TIP147 и другие с высоким коэффициентом усиления, содержат внутри два транзистора, парочку сопротивлений и диод, поэтому обычной прозвонки мультиметром здесь может оказаться не достаточно.

Для проверки каждого из транзисторов можно собрать простую схемку со светодиодом:

Рис. 5. Схема проверки транзисторов структуры P-N-P и N-P-N на работоспособность в ключевом режиме.

В каждой из схем при нажатии кнопки светодиод должен зажечься. Питание можно брать о +5В до +12В.

Рис. 6. Пример проверки работоспособности транзистора КТ825, структуры P-N-P.

Каждую из пар выходных транзисторов нужно обязательно установить на радиаторы, поскольку уже на средней выходной мощности УНЧ их нагрев будет достаточно заметным.

В даташите на микросхему TDA7250 приводят рекомендуемые пары транзисторов и мощность которую можно извлечь используя их в данном усилителе:

При нагрузке 4 Ома
Мощность УНЧ 30 Вт +50 Вт +90 Вт +130 Вт
Транзисторы BDW93, BDW94A BDW93,BDW94B BDV64,BDV65B MJ11013,MJ11014
Корпуса TO-220 TO-220 SOT-93 TO-204 (TO-3)
 
При нагрузке 8 Ом
Мощность УНЧ 15 Вт +30 Вт +50 Вт +70 Вт
Транзисторы BDX53,BDX54A BDX53,BDX54B BDW93,BDW94B TIP142,TIP147
Корпуса TO-220 TO-220 TO-220 TO-247

Принцип действия усилителя на TDA2030

Резисторы R1 (100k), R2 (100k) и R3 (100k) служат для создания виртуального нуля усилителя U1 (TDA2030A), а конденсатор C1 (22uF/35V) фильтрует это напряжение. Конденсатор С2 (2,2 uF/35V) отсекает постоянную составляющую — предотвращает попадание постоянного напряжения на вход микросхемы усилителя через линейный вход.

Элементы R4 (4,7k), R5 (100k) и C4 (2,2 uF/35V) работают в петле отрицательной обратной связи и имеют задачу формирования частотной характеристики усилителя. Резисторы R4 и R5 определяют уровень усиления, в то время как C4 обеспечивает усиление в единицу для постоянной составляющей.

Резистор R6 (1R) вместе с конденсатором C6 (100nF) работают в системе, которая формирует характеристику АЧХ на выходе. Конденсатор C7 (2200uF/35V) предотвращает прохождение постоянного тока через динамик (пропуская переменный звуковой сигнал музыки).

Диоды D1 и D2 предотвращают появление опасных напряжений обратной полярности, которые могут возникнуть в катушке динамика и испортить микросхему. Конденсаторы C3 (100nF) и C5 (1000uF/35V) фильтруют питающее напряжение.

Инструкция по изготовлению

Усилитель звука для колонок своими руками потребует для изготовления радиоматериалы и радиокомпоненты.

Набор деталей (согласно выбранной схеме): микросхема серии TDA или похожая, резисторы, конденсаторы, тестовый динамик (или уже собранная пассивная колонка), алюминиевый радиатор. При сборке усилителя на мощных транзисторах, рассчитанных на низкие частоты до 100 кГц, потребуется, кроме самих транзисторов, несколько менее массивных радиаторов.

Кроме материалов, нужны также некоторые приборы и инструменты.

  1. Пассатижи, бокорезы, набор отвёрток. Может потребоваться разводной ключ и набор шестигранных ключей.
  2. Паяльник и подставка для него.
  3. Если плата изготавливается «с нуля» – нужны миниатюрный бур и набор свёрл. Для изготовления печатной платы без применения химии понадобится резак, которым прочерчиваются канавки, разделяющие дорожки и другие токопроводящие участки.
  4. Мультиметр (тестер) – без него не обходится почти ни одна электромонтажная работа.
  5. Тестовый блок питания. Если такого блока нет, но вам известно напряжение, подающееся на усилитель, – начните сборку устройства с него. Зачастую раздобыть готовый блок питания на 12 вольт (все усилители с выходной мощностью от нескольких ватт требуют именно такое напряжение) гораздо труднее, чем зарядное устройство для смартфона или планшета.

Подготовив все нужные приборы, инструменты, радиоматериалы и радиокомпоненты, можно приступать к сборке самодельного устройства. Для изготовления блока питания на 10 вольт (если усилитель допускает такое падение напряжения) соедините выводы зарядных устройств, рассчитанных на 5 вольт, последовательно. Образуется двуполярный источник питания на 10 В с возможностью заземлить или «занулить» среднюю точку 0(где один «минус» и один «плюс» соединены последовательно).

Сборка усилителя включает ряд шагов.

  1. Если плата не макетная, а полностью «самосборная» – прорисуйте при помощи кисточки или тампона дорожки лаком под топологию микросхемы. Навесные элементы могут располагаться произвольно, рекомендуется их скомпоновать поплотнее. Пересекающихся дорожек быть не должно.
  2. Высушите плату, приготовьте раствор хлорного железа, опустите в него плату на несколько часов или на сутки. Если подогреть раствор, травление пойдёт быстрее, но значительно повысится вероятность облезания защитного слоя.
  3. По окончании травления удалите лак с оставшихся мест, защищённых от вытравливания. Не откладывайте процесс на несколько дней, чтобы лак не пристал накрепко к плате.
  4. Высверлите с помощью бормашины или шуруповёрта отверстия под ножки радиодеталей.
  5. Покройте получившиеся дорожки слоем припоя. Вставьте радиоэлементы, сверяясь по сборочному чертежу, в нужной последовательности, спаяйте их на печатной плате.
  6. Установите радиатор на металлической подложке микросхемы. Если схема усилителя транзисторная, используйте для каждого из оконечных каскадов отдельный радиатор. Допускается разместить их на общем радиаторе.
  7. Припаяйте провода на звуковой вход, вход по питанию и выход по звуку, промаркируйте их.
  8. Подключите колонки к выходу собранного усилителя.
  9. Подключите ко входу источник звука (смартфон, MP3-плеер или радиоприёмник), используя разъём на 3,5 мм.
  10. Подайте питание на соответствующие выводы, включите звук на гаджете, например, выбрав любой из имеющихся саундтреков (или видеороликов).

При правильной сборке усилитель сразу же заработает. Для транзисторных усилителей в режиме «стерео» используют два независимых монофонических усилителя. В качестве рабочего варианта – два одно-, двух-, трёх- и более каскадных устройств. Трехкаскадная схема – самая универсальная: первый, маломощный каскад «раскачает» второй (средней мощности). Второй же – третий (оконечный), обладающий максимальной мощностью. На последний каскад и устанавливается радиатор.

Технология стереозвука (пространственного звучания) такова, что независимые усилители могут подключаться по отдельности и обладать отдельными колонками. Но для стереосистем, в которых сабвуфер (низкочастотный динамик или колонка) общий, стереофонический вариант усилителя собирается на одной микросхеме – и левый, и правый каналы сведены вместе при помощи дополнительных навесных (пассивных) деталей.

TDA2006 Datasheet Download — ST Microelectronics

Номер произв TDA2006
Описание 12W AUDIO AMPLIFIER
Производители ST Microelectronics
логотип  
1Page

No Preview Available !

TDA2006

12W AUDIO AMPLIFIER
DESCRIPTION
The TDA2006 is a monolithic integrated circuit in
Pentawatt package, intended for use as a low

frequency class «AB» amplifier. At ±12V, d = 10 %

typically it provides 12W output power on a 4Ω load

)and 8W on a 8Ω . The TDA2006 provides high

t(soutput current and has very low harmonic and

cross-over distortion. Further the device incorpo-

crates an original (and patented) short circuit protec-

dution system comprising an arrangement for

roautomatically limiting the dissipated power so as to

keep the working point of the output transistors

Pwithin their safe operating area. A conventional

tethermal shutdown system is also included. The

leTDA2006 is pin to pin equivalent to the TDA2030.

Obsolete Product(s) — ObsoTYPICAL APPLICATION CIRCUIT

PENTAWATT

ORDERING NUMBERS : TDA2006V

TDA2006H
September 2003
1/12

No Preview Available !

TDA2006
SCHEMATIC DIAGRAM

lete Product(s)ABSOLUTE MAXIMUM RATINGS

soSymbol

bVs

OVi

) -Vi

t(sIo

cPtot

uTstg, Tj

Parameter
Supply Voltage
Input Voltage
Differential Input Voltage
Output Peak Current (internaly limited)

Power Dissipation at Tcase = 90 °C

Storage and Junction Temperature

rodTHERMAL DATA

te PSymbol

leRth (j-c)

Parameter
Thermal Resistance Junction-case

ObsoPIN CONNECTION

Value

± 15

Vs

± 12

3
20
– 40 to 150
Unit
V
V
A
W

°C

Value
Unit

Max 3 °C/W

2/12

No Preview Available !

TDA2006
ELECTRICAL CHARACTERISTICS

(refer to the test circuit ; VS = ± 12V, Tamb = 25oC unless otherwise specified)

Symbol
Parameter
Test Conditions
Min. Typ. Max. Unit

Vs Supply Voltage

± 6 ± 15 V

Id Quiescent Drain Current

Vs = ± 15V

40 80 mA

Ib Input Bias Current

Vs = ± 15V

0.2 3 µA

VOS Input Offset Voltage

Vs = ± 15V

± 8 mV

IOS Input Offset Current

Vs = ± 15V

± 80 nA

VOS Output Offset Voltage

t(s)Po Output Power

ucd Distortion

rodVi Input Sensitivity

te PB

leRi

soGv

bGv

— OeN

t(s)iN

cSVR

uId

Frequency Response (– 3dB)
Input Resistance (pin 1)
Voltage Gain (open loop)
Voltage Gain (closed loop)
Input Noise Voltage
Input Noise Current
Supply Voltage Rejection
Drain Current

rodTj Thermal Shutdown Junction

PTemperature

Obsolete(*) Referring to Figure 15, single supply.

Vs = ± 15V

d = 10%, f = 1kHz

RL = 4Ω

RL = 8Ω

Po = 0.1 to 8W, RL = 4Ω, f = 1kHz

Po = 0.1 to 4W, RL = 8Ω, f = 1kHz

Po = 10W, RL = 4Ω, f = 1kHz

Po = 6W, RL = 8Ω, f = 1kHz

Po = 8W, RL = 4Ω

f = 1kHz
f = 1kHz
f = 1kHz

B (– 3dB) = 22Hz to 22kHz, RL = 4Ω

B (– 3dB) = 22Hz to 22kHz, RL = 4Ω

RL = 4Ω, Rg = 22kΩ, fripple = 100Hz (*)

Po = 12W, RL = 4Ω

Po = 8W, RL = 8Ω

± 10 ± 100 mV

12
68
W
0.2 %
0.1 %
200 mV
220 mV
20Hz to 100kHz
0.5 5

MΩ

75 dB
29.5 30 30.5 dB

3 10 µV

80 200 pA
40 50
dB
850 mA
500 mA

145 °C

3/12

Всего страниц 12 Pages
Скачать PDF

Параметры усилителя, пара слов о TDA7293

Основные критерии по которым отбиралась схема УНЧ для усилителя Phoenix-P400:

  • Мощность примерно 100Вт на канал при нагрузке 4Ом;
  • Питание: двуполярное 2 х 35В (до 40В);
  • Небольшое входное сопротивление;
  • Небольшие габариты;
  • Высокая надежность;
  • Быстрота изготовления;
  • Высокое качество звука;
  • Низкий уровень шумов;
  • Небольшая себестоимость.

Достаточно не простое сочетание требований. Сначала опробовал вариант на основе микросхемы TDA7293, но оказалось что это не то что мне нужно, и вот почему…За все время мне довелось собрать и опробовать разные схемы УНЧ —  транзисторные из книг и публикаций журнала Радио, на различных микросхемах…

Хочу сказать свое слово о TDA7293 / TDA7294, поскольку в Интернете о ней написано очень много, и не раз встречал что мнение одного человека противоречит мнению другого. Собрав несколько клонов усилителя на этих микросхемах сделал для себя некоторые выводы.

Микросхемы действительно неплохие, хотя многое зависит от удачной разводки печатной платы (в особенности линий земли), хорошего питания и качества элементов обвязки.

Что меня сразу порадовало в ней — так это достаточно большая отдаваемая в нагрузку мощность. Как для однокристального интегрального усилителя НЧ выходная мощность очень хорошая, также хочу отметить очень низкий уровень шумов в режиме без сигнала

Важно позаботиться о хорошем активном охлаждением микросхемы, поскольку чип работает в режиме «кипятильника»

А теперь, главное из-за чего я не хотел использовать модули на TDA7293 в своем проекте — это заметный моему слуху «металлизированный» звук, в нем не слышно мягкости и насыщенности, немного туповаты средние частоты.

Сделал для себя вывод что этот чип отлично годится для сабвуферов или усилителей НЧ, которые будут бубнеть в багажнике авто или на дискотеках!

Касаться темы однокристальных усилителей мощности далее я не буду, нужно что-то более надежное и качественное, чтобы не так дорого обходилось при опытах и ошибках. Собирать 4 канала усилителя на транзисторах — это хороший вариант, но достаточно громоздкий в исполнении, также он может быть сложен в настройке.

Так на чем же собирать если не на транзисторах и не на интегральных микросхемах? — и на том и на другом, умело скомбинировав их! Будем собирать усилитель мощности на микросхеме-драйвере TDA7250 с мощными составными транзисторами Дарлингтона на выходе.

Сборка усилителя

Схема проверенная и рабочая. Это простой моно усилитель, собран на микросхеме К174УН7. На эту микросхему необходим радиатор. Аналогами микросхемы являются TBA810AS и LA4420. Печатную плату можно сделать с помощью перекиси, этот метод очень доступен. Только для этой платы нужно 200 мл перекиси. Красная линия на печатной плате это ее граница, ее перед травлением нужно стереть. Плату можно питать от аккумуляторов, даже от 4 вольт. Еще в схеме еще регулировка звука с помощью переменного резистора на 40 кОм.

Проверить работу схемы просто. После подключения питания можно дотронуться пальцем до джека (вход усилителя). В динамике (выход усилителя) будет слышен резкий треск с фоновым шумом.

Пайку лучше начинать с проводов и мелких компонентов, например керамических конденсаторов или резисторов.

Микросхему нужно установить на радиатор и припаивать к плате последней.

Время пайки одного вывода за одно прикосновение паяльника не больше пары секунд, затем перерыв.

Если вывод плохо запаялся, подождите пока он остынет, снова нанесите флюс и паяйте. Радиатор немного экранирует тепло, но чтобы перестраховаться, пайка одного контакта не должна быть слишком долгой.

Оцените статью:
Оставить комментарий