Схема соединения «звезда»

Содержание

Реализация части управления

Включать и выключать эти три контактора можно разными способами, вот несколько:

  • Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
  • Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
  • Релейная схема с таймером. Её рассмотрим ниже.
  • Управление от специализированного реле. Это отдельная статья, следите за новостями.
  • Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.

Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.

Короче, вот простейшая схема:

Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая

Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.

Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

Практическая схема “Звезда-треугольник” с блокировкой

Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи  магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.

Схема подключения электродвигателя звездой и треугольником: в чем разница?

Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Вспомним вкратце принцип действия асинхронного двигателя.

Три одинаковые лампы являются равномерной однородной нагрузкой, поэтому их нейтраль не смещена; следовательно, напряжения на лампах одинаковы и равны в нашем примере В. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной.

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока, который в 5 — 7 раз превышает рабочий ток двигателя. При отсутствии потери напряжения в обмотках источника при холостом ходе фазные напряжения равны соответствующим э.

Естественно, возникает вопрос: может ли равняться нулю ток в проводе, по которому в генератор должны возвращаться токи трех фаз? При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Этот путь может проходить целиком по воздуху.

Соединение обмоток звездой и треугольником

Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Выводы В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей. Правда, встречаются иногда экземпляры несколько иной конфигурации. Ответ такой: — для нормального подключения двигателя в однофазную сеть через конденсатор требуется, чтобы номинальное напряжение обмотки двигателя было не больше фазного напряжения электрической сети.

Действительно, если включить лампу так, как показано на рисунке 2, г, то нетрудно видеть, что в лампе токи, созданные действием фазных напряжений Ua и Ub, направлены навстречу. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Электропитание поступает на сводку треугольником, напряжение идёт на соединение звездой.

То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. Таким выглядит клеммник движка стандартной конфигурации. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.
электродвигатель схема подключения

https://youtube.com/watch?v=hwvm5GXfPtc

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они в 99% бывают на 2 вида напряжения – 220/380 и 380/660 В. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты

И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!. Двигатель на 220/380 В

Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!

Как будет выглядеть подключение подобного двигателя в коробке:

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни используется редко (горношахтное оборудование), а схема, показанная справа, используется для “раскрутки” ротора.

Реальные примеры:

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник. После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду. Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

«Треугольник»

По схеме треугольника начало следующей и конец предыдущей обмотки соединяются между собой, то есть: конец первой обмотки соединяется с началом второй, конец второй обмотки соединяется с началом третьей, а конец третьей с началом первой обмотки, а питающие провода подключаются к точкам соединения обмоток.

Итого у нас получается три точки соединения начал и концов обмоток и, соответственно, возможно подключение только трёх питающих фазных проводов без нулевого.

На схеме такое соединение также может быть нарисовано по-разному — наглядным и похожим на треугольник, или в горизонтальном или вертикальном исполнении.

Если говорить о подключении другой нагрузки, не относящейся к трансформаторам и электроприводу, то понятия «начало» и «конец» там нет, поэтому провода подключаются произвольно, но с сохранением логики соединения этих схем.

Мощность, ток и напряжение

Всем известно, что в электросети есть два напряжения: фазное — 220В и линейное — 380В. Здесь линейное напряжение больше фазного в 1.73 раза (корень квадратный из 3). Дело в том, что вторичная обмотка питающего трансформатора соединяется звездой и между фазой и нейтралью получаются те самые 220В, а между двумя разноименными фазами — 380В.

Но это справедливо не только для питающей сети, но и при распределении напряжения между потребителями. Поэтому давайте рассмотрим подробнее схему соединения обмоток звездой — как в ней распределяются токи и напряжения.

Как мы уже отметили выше в «звезде» есть два напряжения — фазное (Uф) и линейное (Uл), и при этом они соотносятся следующим образом:

Uл=1,73*Uф

Токи также бывают фазными и линейными, и в схеме звезды они равны.

Iл=Iф

В «треугольнике» дела обстоят подобным образом, но здесь, наоборот — линейное (Uл) и фазное (Uф) напряжения равны, но при этом линейный ток превышает фазный в 1,73 раза.

Uл=Uф

Iл=1,73*Iф

Распределение токов и напряжений между элементами цепи в схемах звезды и треугольника

На рисунке выше важно выделить, что при соединении обмоток звездой на каждую обмотку приходится напряжение в 1.73 раза меньше линейного напряжения в питающей сети, то есть для 380В – 220, для 220В – 127, для 660 — 380 вольт. Запомните это, чуть позже мы вернемся к этому вопросу

Формулы мощности для цепей соединенной по схеме звезды и по схеме треугольника не отличаются.

· полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;

· активная P = √3*Uл*I*cos φ;

· реактивная Q = √3*Uл*I*sin φ.

Практика – для чего нужны эти схемы

Большинство электриков работают с электрическими сетями напряжением 220/380 вольт, поэтому давай рассмотрим, какую схему соединения обмоток выбрать для подключения электродвигателя к такой электросети.

Трёхфазные асинхронные двигатели по способу подключения к электросети условно можно разделить на 2 больших группы: с возможностью изменения схемы соединения обмоток и без неё.

В первом случае на клеммник в брно электродвигателя выведено 6 проводов, и вы можете, в зависимости от напряжения в электросети, к которой подключаете выбрать нужную схему соединения обмоток.

Внешний вид клеммника в брно электродвигателя с тремя (сверху) и с шестью выводами (внизу)

При этом обмотки соединяются в ту или иную схему с помощью медных шинок (или перемычек из провода, если шины потеряли), клеммы расположены таким образом, что с помощью всего трёх перемычек может быть собрана нужная схема (см. рисунок ниже).

Соответствие начал и концов обмоток клеммам, и соответствие положения перемычек между клеммами схемам подключения (звезде и треугольнику)

Хоть и это должен помнить и знать каждый электрик, тем не менее производители зачастую отливают либо же клеят этикетку с указанием положения перемычек для каждой из схем на крышке брно.

Собранные схемы звезды (сверху) и треугольника (снизу), обратите внимания положение перемычек указано на крышке (в правой части фотографий).

Если же в брно выведено всего 3 провода, то обмотки двигателя уже соединены по какой-то схеме внутри его корпуса, и для переключения звезды и треугольника нужно вскрывать корпус, искать концы обмоток, разъединять их и соединять так, как вам нужно. Но это скорее процедура из «народного хозяйства», нежели часто встречающаяся производственная необходимость.

Почему в нулевой провод не разрешается включать предохранитель?

Допустим, в начале стояка установлен предохранитель, но он перегорел (на рисунок 5, г он перечеркнут). В этом случае четырехпроводная схема превращается в трехпроводную со всеми рассмотренными выше недостатками, присущими ей при неравномерной нагрузке фаз.

Согласно Правилам устройства электроустановок (ПУЭ) в начале стояка в нулевой провод не разрешается включать предохранитель (рубильник, автомат). На этажных щитках лестничных клеток, откуда питание расходится по квартирам, предохранители (автоматы) устанавливают только в фазном проводе (рисунок 5, д) либо предохранителей вообще нет. В этом случае, однако, обязателен выключатель В или автомат А, которым вся квартира может быть отсоединена от стояка.

Рисунок 6. Установочный автомат типа ПАР–10 (предохранитель автоматический резьбовой на ток 10 А), ввертывающийся в предохранитель вместо пробки.1 – кнопка для включения; 2 – кнопка для отключения. На корпусе автомата написаны его номинальные данные: предельное напряжение сети, например 250 В (эти же автоматы пригодны для сетей 127 и 220 В), и номинальный ток, например 10 А. Номинальный ток может проходить через автомат неограниченно долго. Но при перегрузке (превышении номинального тока) автомат отключается, причем тем скорее, чем перегрузка больше. Короткое замыкание автомат отключает мгновенно.

Но в квартирах, где к предохранителям П имеют доступ лица, не имеющие специальной электротехнической подготовки, из-за чего не исключено недостаточно хорошее состояние предохранителей, их обязательно устанавливают на обоих проводах, чтобы повысить пожарную безопасность. Не противоречит ли это сказанному выше о недопустимости включать предохранитель в нулевой провод? Нисколько. Потому что нагрузка в пределах квартиры является однофазной,  так как по обоим проводам и предохранителям проходит один и тот же ток. Значит перегорание предохранителя в любом проводе (фазном или нулевом – безразлично) не может привести к перекалу ламп: они просто погаснут.

Предохранители в осветительных сетях уступают место установочным автоматам благодаря тому, что автоматы обеспечивают более совершенную защиту и не требуют замены. В новых домах предохранители не применяют. В старых квартирах вместо пробок в предохранители можно установить автоматы (рисунок 6) с резьбовым цоколем, не производя каких-либо монтажных работ.

Смещение нейтрали нагрузки

Рассмотренный выше рисунок 12 иллюстрирует аварийные случаи смещения нейтрали (заземление, короткое замыкание, обрыв фазы). Но нейтраль может смещаться и в нормальных режимах из–за неравномерности нагрузки фаз.

Рассмотрим несколько примеров.

Рисунок 13. Смещение нейтрали при различных видах нагрузки.

При однородной 4, но неравномерной нагрузке нейтраль из точки (рисунок 13, а) смещается в точку ’ причем направление смещения и его величина зависят от соотношения нагрузок фаз. Но так или иначе отрезок – ’ в определенном масштабе изображает напряжение между нейтралью трансформатора и нейтралью нагрузки. Именно это напряжение и создает ток в нулевом проводе, если соединены нейтрали:

а) нагрузки Н и вторичной обмотки трансформатора Т3 (смотрите рисунок 9, а); б) первичной обмотки повышающего трансформатора Т1 и генератора Г (смотрите рисунок 9, а).

Особенно значительно нейтраль нагрузки смещается при разнородной нагрузке, даже если по модулю (по абсолютной величине) нагрузки всех фаз равны. На рисунке 13, б, например, к фазам C и B присоединены лампы (активная нагрузка), а к фазе A – конденсатор С. Нейтраль при этом настолько сместится, что одна из ламп будет гореть тускло (50 В), а другая – ярко (190 В). Аналогична картина при замене конденсатора катушкой индуктивности L, но теперь ярко будет гореть другая лампа (рисунок 13, в). Объясняется это тем, что ток в конденсаторе опережает, а ток в индуктивности отстает от напряжения своей фазы.

Еще более разительное смещение нейтрали изображено на рисунке 13, г, где присоединены: к фазе A – конденсатор, к фазе B – индуктивность, к фазе C – активная нагрузка. Нейтральная точка нагрузки 0’ вышла за пределы треугольника, а напряжения на нагрузке 423 и 220 В во много раз превысили фазное напряжение 127 В.

Важное замечание. В рассмотренных на рисунке 13, б – г примерах речь шла о смещении нейтрали нагрузки, а вовсе не генератора или вторичной обмотки трансформатора

На конденсаторе, индуктивности и активном сопротивлении, соединенных в звезду (рисунки 13, б – г), напряжения действительно сильно изменились по сравнению с фазными. Но влияет ли это на работу других потребителей, присоединенных к этой же сети? Чтобы ответить на этот вопрос, обратимся к рисунку 13, д, предположив, что соединение, изображенное штриховой линией, отсутствует. Нетрудно видеть, что каждая группа потребителей (R – C – L, лампы Л, электродвигатель Д) имеет свою нейтраль. Три одинаковые лампы являются равномерной однородной нагрузкой, поэтому их нейтраль не смещена; следовательно, напряжения на лампах одинаковы и равны в нашем примере 127 В. То же можно сказать о напряжениях на обмотках двигателя.

Иное дело, если нейтрали потребителей соединены (штриховая линия). Тогда взаимное влияние нагрузок безусловно, но его степень определяется соотношением нагрузок. И ясно, что чем крупнее сеть и чем мощнее генераторы и трансформаторы, тем меньше на смещение нейтрали влияет каждый потребитель.

Разнородность нагрузки оказывает влияние на работу других потребителей лишь в том случае, если она относительно настолько велика, что может существенно нарушить магнитное равновесие трансформатора.

Видео 1. Перекос фаз

1 Вектор определяется как длиной, так и направлением. Длина вектора называется его модулем2 Строго говоря, напряжение разделится несколько иначе. Дело в том, что чем горячее нить лампы, тем больше ее сопротивление, и так как одна лампа горит с перекалом, а три с недокалом, то разница в их сопротивлениях будет еще значительнее.3 Напряжение между изолированной нейтралью трансформатора и землей равно нулю лишь в тех случаях, когда сеть не нагружена или если нагрузка всех фаз совершенно одинакова. При неравномерной нагрузке фаз происходит смещение нейтрали.4 Нагрузка всех фаз либо активная (лампы, печи), либо индуктивная, либо емкостная.5 Топографическая диаграмма представляет собой такую векторную диаграмму, в которой каждая точка диаграммы соответствует определенной точке цепи. Поэтому вектор, проведенный из начала координат в любую точку топографической диаграммы, выражает по величине и фазе потенциал соответствующей точки цепи, а отрезок, соединяющий две любые точки диаграммы – напряжение между соответствующими точками цепи.

В чем отличия таких подключений.

Различие этих подключений в том, что достигаются разные номиналы напряжения и тока при эксплуатации приборов с одной питающей сети. Зависит от характеристик электромашин, где будет использовано то или иное подключение.

Схему звезды применяют чаще, из-за более мягкого режима работы электродвигателей и приборов. Плюсом является и то, что величина тока, идущего по обмоткам, меньше, чем при соединении треугольником. В то время как напряжение больше.

Особенности схемы соединения звездой:

  • Нормальная работа при кратковременных перегрузках.
  • Устойчивый рабочий режим.
  • Плавный пуск электропривода.

Порой электрооборудование предназначено для работы именно с одним из типов соединений. Здесь изначально соединены концы обмоток и на клеммы выводится только три провода (начало обмоток).

схемы соединения звездой и треугольником

______________________________________________________________________________________

Схема треугольника, часто используют для сложных электромашин и увеличения нагрузок во время запуска.

Достоинство соединения треугольником:

  • Повышается мощность оборудования.
  • Малые токи при запуске.
  • Увеличен вращающий момент.

На производстве применяется комбинированное соединение: звезда-треугольник.

Во время запуска электродвигателя, резко повышается величина пускового тока, поэтому до разгона он подключен звездой. После достижения устойчивого вращения и войдя в режим, переключается на треугольник. В промышленности этот процесс автоматизирован. Этим методом достигается наибольшая производительность и надёжность электродвигателей.

Каждая из схем предназначена для определённого подключения, в зависимости от характеристик электромашины.

________________________________________________________________________________

Также интересно ваше мнение по поводу следующего подключения:

_____________________________________________________________________________

Полезно? Ставим лайк, комментируем, .

Соединение в треугольник трехфазного генератора или вторичной обмотки трансформатора.

Соединим конец x обмотки ax с началом b обмотки by, конец y обмотки by с началом c обмотки cz, конец z обмотки cz с началом a обмотки ax так, как показано на рисунке 1. Такое соединение по виду напоминает треугольник, откуда и происходит его название. Линейные провода присоединены в вершинах треугольника.

Рисунок 1. Соединение в треугольник генератора.

Основные соотношения: 1. При соединении в треугольник линейные и фазные напряжения равны потому, что каждые два линейных провода (как видно из рисунка 1) присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. 2. Линейные токи Iл больше фазных Iф в √3 = 1,73 раза.

Как доказать, что Iл = 1,73 × Iф? Воспользуемся для этого векторной диаграммой рисунка 2.

Рисунок 2. Определение линейных токов при соединении в треугольник.

Фазные токи Iab, Ibc, Ica в трех электроприемниках ЭП (рисунок 2, а) изображаются векторной диаграммой (рисунок 2, б), которая получена путем перенесения параллельно самим себе векторов с рисунка 2, а. Вершины треугольника нагрузок a, b и c являются узловыми точками. Поэтому согласно первому закону Кирхгофа справедливы равенства

Ia + Ica = Iab, откуда Ia = Iab – Ica;Ib + Iab = Ibc, откуда Ib = Ibc – Iab;Ic + Ibc = Ica, откуда Ic = Ica – Ibc.

Понятно, что эти равенства геометрические, поэтому вычитание нужно выполнять по правилам вычитания векторов, что и сделано на рисунке 2, б. Непосредственное измерение длин векторов или вычисления по правилам геометрии показывают, что линейные токи Ia, Ib и Ic больше фазных токов Iab, Ibc и Ica в √3 = 1,73 раза.

На рисунке 2, б также видно, что векторная диаграмма симметричных линейных токов Ia, Ib и Ic сдвинута на 30° в сторону, обратную вращению векторов, относительно диаграммы фазных токов Iab, Ibc и Ica. Иными словами, ток Ia отстает на 30° от тока Iab. Ток Ib отстает на 30° от тока Ibc, ток Ic отстает на 30° от тока Ica. Порядок индексов в обозначении фазных токов указывает на порядок вращения фаз. В нашем примере порядок следования (вращения) фаз: a, b, c.

На рисунке 2, в показано соединение в треугольник обмоток генератора или вторичных обмоток трансформатора. Векторы токов Iba, Iac, Icb, проходящих в обмотках генератора (вторичных обмотках трансформатора), и векторы токов в нагрузке (Iab, Ica, Ibc) соответственно параллельны, но повернуты на 180°. Причина такого расположения векторов станет ясна, если совместить рисунок 2, в с правой частью рисунка 2, а, что и выполнено на рисунке 2, г.

Обращается внимание на то, что все три обмотки внутри генератора (трансформатора) соединены последовательно и образуют замкнутую цепь. Подобное соединение в установках постоянного тока привело бы к короткому замыканию

В установках трехфазного тока в силу того, что электродвижущие силы (э. д. с.) сдвинуты по фазе на 120°, ток в этом замкнутом контуре отсутствует, так как в каждый момент сумма э. д. с. трех обмоток равна нулю 1.

Рисунок 3. Соединение в треугольник трансформаторов.

Подключение звездой

В этом случае концы обмоток статора соединяются вместе в одной точке с помощью специальной перемычки. Трехфазное напряжение подается на их начала. Таким образом, на фазной обмотке напряжение будет 220в, а линейное напряжение между двумя оставшимися фазными обмотками – 380в.

Подключение трехфазных двигателей с питающим напряжением 220/127в к стандартным однофазным сетям выполняется только по типу звезды, в противном случае агрегат быстро придет в негодность. Также именно по данной схеме подключаются все электромоторы российского производства на 380в.

В целом подключение звездой обеспечивает более мягкий запуск двигателя и плавность его работы, давая также возможность перезагрузки. Поэтому двигатели средней мощности принято запускать по данной схеме. Однако следует учесть, что в этом случае трехфазный двигатель не сможет работать на полную мощность.

Что будет если перепутать звезду и треугольник?

Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:

Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.

Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.

Теперь соеденим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.

Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.

Что при этом происходит с мощностью?

Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.

Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.

Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:

S = √3*Uл*Iл;

S=1.73*380В*1А=657,4 ВА

При этом мощность одной лампы в этом случае равна 220 ВА.

В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток) возрастет на столько же. При этом не забывайте, что линейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:

S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА

А на одной лампе выделится мощность равная:

W=380В*1.73А=657 ВА

Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.

Звезда / Треугольник: работа схемы

Хорош теорию, даёшь практику! Как же реализован алгоритм работы схемы подключения? Если очень коротко, схема “Звезда-Треугольник” работает так.

1. Подается питание (а напряжение питания у нас во всех режимах 380 В) на выводы U1, V1, W1, а выводы U2, V2, W2 соединяются в одной точке. Реализуется схема “Звезда”, в которой вместо номинала 660 В подается 380 В:

Первый момент запуска. Обмотки в “Звезде”. Около обмоток указано “380” – это номинал. Реально в данном случае на катушках будет действовать напряжение 220 В!

2. Так двигатель работает несколько секунд (от 5 с до нескольких минут, зависит от тяжести пуска). Это время задается таймером (реле времени), который входит в состав схемы.

3. Далее питание полностью снимается на время второго таймера, двигатель по инерции вращается несколько периодов напряжения (время от 50 до 500 мс). Этот защитный интервал необходим для гарантированной безаварийной работы схемы. Контактор “звездного” режима должен успеть выключиться, прежде чем включится “треугольный” контактор. Ведь время выключения у контакторов всегда в несколько раз больше, чем время включения, из-за явлений намагничивания. К сожалению, эта пауза технически реализуется далеко не всегда…

4. После второго таймера включается основной режим, “Треугольник”, в котором двигатель получает нормальное питание и работает, пока его не выключат:

Схема включения треугольник – работа на крейсерской скорости. На катушках – номинальное напряжение.

Всё, если коротко. Дальше будут временные диаграммы, будет всё понятно.

Есть варианты и без второго таймера, но с обязательной блокировкой включения “Треугольника”, пока не выключится “Звезда”.

Теперь о том, как реализуется этот алгоритм. Для удобства разделим схему на две части, которые могут даже иметь разное питание – силовую и управляющую.

Ошибки при соединении в зигзаг

Все сказанное о соединениях в звезду еще в большей мере относится к соединению в зигзаг – звезду, так как приходится соединять значительно больше выводов. Результат неправильного определения конца и начала одной из обмоток (показано штриховой линией) иллюстрирует рисунок 4, б (сравните с векторной диаграммой на рисунке 4, а). Рисунок 4, в показывает, что в результате неправильного определения концов и начал трех обмоток получены √3 раз меньшие напряжения, чем нормальное. Кроме того, векторная диаграмма повернулась на 90°.

Рисунок 4. Соединение в зигзаг: правильное (а) и неправильные (б и в).

Какую схему выбрать и какая лучше?

Итак, как соединить обмотки звездой и треугольником мы разобрались, но здесь как раз и начинается «все самые интересные вопросы», причем эти вопросы у людей возникают чаще всего либо при подключении трёхфазного двигателя к однофазной сети, либо при подключении двигателя к частотному преобразователю с однофазным входом и линейными 220В на выходе и в других ситуациях.

Возможность изменения схемы соединения обмоток нужна для того, чтобы один и тот же двигатель мог эксплуатироваться в электросетях с различным напряжением.

Какую схему лучше выбрать? Вопрос не корректный, нужно соединять обмотки в ту схему, номинальное напряжение которой соответствует напряжению в электросети. Эта информация указана на шильдике электродвигателя.

Номинальные напряжения для треугольника и звезды на шильдике

Если на шильдике вашего двигателя указано как на фото выше «Δ/Y 220/380» — это значит что если линейное напряжение в питающей сети 220В – нужно соединять обмотки треугольником, если 380В – звездой. Если вы будете его подключать к однофазной сети 220В с конденсаторами – обмотки также соединяются треугольником.

Если на шильдике указано только одно напряжение и значок схемы (см. рисунок ниже), то возможности изменить схему соединения нет, и в брно, скорее всего, выведено будет 3 провода.

Встречаются и двигатели, которые в сети 380В работают, соединенными по схеме треугольника, схема звезды в этом случае рассчитана на работу в сети 660В, что вы можете наблюдать на следующей фотографии.

Но зачастую такие двигатели используются для пуска с переключением со звезды на треугольник, это делают для понижения пусковых токов.

В этом случае напряжение 380В подаётся сначала на обмотки соединенные по схеме звезды, так как номинальное напряжение для этой схемы 660В двигатель в момент пуска питается от пониженного напряжения и к каждой из обмоток прикладывается всего по 220В.

Когда обороты двигателя возрастают, происходит переключение на треугольник. И уже к каждой обмотке прикладываются их номинальные 380В.

Схема подключения электродвигателя с переходом со звезды на треугольник при пуске

Схема подключения электродвигателя с переходом со звезды на треугольник при пуске

Что будет если перепутать звезду и треугольник?

Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:

Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.

Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.

Теперь соединим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.

Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.

Что при этом происходит с мощностью?

Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.

Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.

Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:

S = √3*Uл*Iл;

S=1.73*380В*1А=657,4 ВА

При этом мощность одной лампы в этом случае равна 220 ВА.

В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток) возрастет на столько же. При этом не забывайте, что линейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:

S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА

А на одной лампе выделится мощность равная:

W=380В*1.73А=657 ВА

Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.

Алексей Бартош специально для ЭТМ

Оцените статью:
Оставить комментарий