Типовые конструкции задних ведущих мостов

Типичная схема мостового преобразователя

В этой схеме для контроля и ограничения тока применяется трансформатор тока. Это оправдано для мощных преобразователей. Обычно по мостовой схеме строятся именно мощные преобразователи, так что в основном используются токовые трансформаторы. Но если Вы захотите спроектировать относительно маломощный мостовой источник питания, то можно для контроля тока применить считывающий резистор. Тогда нужно соединить нижние ключи, подключить резистор и обратные диоды так, как это показано в пушпульной схеме. Дальше в форме расчета мы посчитаем сопротивление и мощность этого резистора (R7).

Схема может строиться на основе ШИМ — контроллера 1156ЕУ2 (D1). Кроме него в схеме применяются два драйвера полумоста (D3, D4), например, IR2184. Именно эти драйверы обеспечивают правильное (описанное выше) переключение транзисторов. Эти драйвера предназначены только для работы с полевыми транзисторами, так что биполярные транзисторы в этой схеме применяться не могут.

Мостовые схемы постоянного тока

На фото — диодный мост KBPC, рассчитанный на прямой ток 25 ампер.

Принципиальная схема мостика Уитстона Обратите внимание на основы электричества и на приборы электроники. Участки цепи, соединяющие точки а и с, а также b и d, называются диагоналями моста

Мостовые схемы включения резисторов Пример использования мостовой схемы соединения резисторов Мостовую схему применяют также для включения реле боксования на некоторых электровозах.

Мостовые схемы обладают высокой точностью, широким диапазоном измеряемых значений параметров элементов. Схема реверсирования. Сама сборка моста состоит из четырех диодов с одинаковыми параметрами.

Rx — неизвестное сопротивление R1, R2, R3 — регулируются до тех пор пока ток через ноль-индикатор не станет равным нулю. ИС A1 управляет транзистором Q1, который удерживает напряжение в средней точке моста равным нулю во всем диапазоне рабочих режимов. Схема управления электроприводом дистанционным способом. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока.

У такой сборки 4 вывода. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку. По роду тока мостовые электрические схемы делятся на мосты постоянного и мосты переменного тока. Отсюда следует, что равновесие не зависит от сопротивления ноль-индикатора, так как ток не течет через него, а также от напряжения и сопротивления источника питания.

Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью. Таким образом, если на вход диодного моста подать переменный ток электросети частота 50 герц , то на выходе получим постоянный ток с пульсациями частотой герц. Следовательно, емкостные и индуктивные компоненты следует размещать в противоположных плечах моста.

Набор декад с различными сопротивлениями, отличающимися друг от друга в 10, , и т. Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. К узловым точкам С и D подключен источник питания с напряжением U.

При измерении, R1 и R2 выбираются такими, чтобы чувствительность моста была максимальной. Она обладает несколько большим дрейфом напряжения сдвига и более низким уровнем шумов. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Его усложнение по сравнению с базовой схемой моста Уитстона является необходимым для избежания ошибок, вносимых паразитными сопротивлениями на пути тока между низкоомным образцовым сопротивлением и сопротивлением, величина которого измеряется. Где применяется схема диодного моста?
Мостовой кран.Мост и тележка.часть 2.

Схема мостового измерителя

Принципиальная схема реального мостового измерителя емкости и индуктивности, который вам предлагается сегодня сделать, показана на рисунке 4. Вы, наверное уже догадались, что этот прибор будет работать от низкочастотного генератора и лабораторного источника сигнала, которые мы с вами уже сделали ранее.

При помощи моста можно измерять емкости от десятков пФ до единиц мкФ и индуктивности от десятков мкГн до единиц мГн.

В качестве индикатора баланса используются обычные головные телефоны, например, от аудиоплейера, которые подключаются в гнездо Х5

Обратите внимание -общий вывод гнезда никуда не припаян, а к схеме подключены выводы стереоканалов наушников. Это позволяет увеличить сопротивление телефонов потому, что обе звуковые катушки так будут включены последовательно

На разъем Х2 подаются прямоугольные импульсы с выхода нашего генератора, при этом S4 генератора должен быть в противоположном, показанному на схеме положении (см. «РК-12-2004, стр.36-38).

Рис. 4. Принципиальная схема мостового измерителя емкости и индуктивности.

Транзисторный ключ на VT1 (рис.4) защищает выход микросхемы генератора от перегрузки, которая может возникнуть в процессе работы с мостом. Переключателями S1-S5 выбирают пределы измерения и то, что нужно измерять (индуктивность или емкость). При измерении индуктивности измеряемые катушки нужно подключать к клеммам Х3, а измеряя емкость — измеряемые конденсаторы подключать к Х4.

Если вернуться к схемам, приведенным на рисунках ЗА и ЗБ, то, конденсаторы С1, С2 и С3 (рис. 4) это конденсатор С1 (рис.З А), а измеряемый конденсатор — это С2 (рис.ЗА). Индуктивности L1 и L2 показанные на схеме на рисунке 4, — это индуктивность L2 в схеме на рисунке ЗБ, а измеряемая индуктивность — это L1 на рисунке З Б.

Органом измерения и, одновременно, индикатором результата измерения служит переменный резистор R1. Его рукоятка имеет стрелку, а вокруг нее нанесена на корпусе прибора шкапа (таким же способом как шкала настройки генератора НЧ).

На разъем Х1 подается напряжение от лабораторного источника питания. При измерении емкостей величина этого напряжения должна быть установлена 10-12V, а при измерении индуктивностей — 4-5V. Индуктивность и емкость можно отсчитывать по одной и той же шкале

Это важно, поскольку для градуировки измерителя емкости можно приобрети достаточное количество конденсаторов разных емкостей, а с приобретением такого же количества разных катушек могут возникнуть проблемы. Поэтому, градуировав прибор на измерение емкости можно им пользоваться и для измерения индуктивности

На генераторе установите частоту около 1000 Гц. С такой частотой в дальнейшем и будет работать мост. Конденсаторы С1, С2 и С3 нужно выбрать с наименьшей погрешностью емкости. Если есть такая возможность лучше их емкости предварительно проверить при помощи какого-то точного прибора, измеряющего емкости. В качестве L2 и L1 лучше использовать готовые дроссели (на 100 мкГн и на 1 мГн).

Прибор можно собрать в любом подходящем по размерам корпусе, например, в пластмассовой мыльнице. В качестве переключателей S1-S4 можно использовать такие же как в генераторе НЧ, но не три, а пять модулей или простые тумблеры. Можно всех их заменить одним поворотным переключателем на пять положений.

Работая с прибором нужно помнить, что только один из S1-S5 может быть замкнутым, при этом все остальные разомкнуты.Шкала одна и та же для всех пределов и видов измерения. Поэтому, её можно отградуировать на одном пределе, например, «х0,01 мкФ». В этом случае, подготовьте эталонные конденсаторы, например, на 1000 пф, 1500 пф, 3000 пФ, 5000 пф, 7500 пФ, 0,01 мкФ, 0,015 мкФ, 0,02 мкФ, 0,05 мкФ, 0,1 мкФ.

Проводя контрольные измерения этих эталонных конденсаторов, при замкнутом S2, делайте на шкале метки : 1000 пФ -«0,1″, 1500пФ — ”0,15″, 3000 пФ — ”0,3», 5000 пФ — «0,5», 7500 пФ — «0,75», 0,01 мкФ — «1», 0,015 мкФ — «1,5», 0,02 мкФ — «2», 0,05 мкФ -«5», 0,1 мкФ — «10».

Метку нужно делать в том месте шкалы, при повороте рукоятки переменного резистора в которое, при подключенном эталонном конденсаторе, звук в наушниках пропадает.

Рк2005, 1.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Что такое измерительный мост

А теперь разберемся, — что же такое измерительный мост? Начнем с моста постоянного тока (такими можно измерять сопротивления) — рис. 1. Есть четыре резистора включенных очень похоже на то, как включены диоды в мостовом выпрямителе. На одну диагональ моста подается постоянное напряжение а в другую включен стрелочный вольтметр Р1 с нулем в центре шкалы.

Предположим, что R1=R2 (рисунок 1 А), тогда напряжение в точке соединения этих резисторов будет равно половине напряжения U. Если, при этом, R3=R4, то в точке соединения R3 и R4 будет такое же напряжение (0,5U) как и в точке соединения R1 и R2. То есть, разности потенциалов между этими двумя точками нет, и наш вольтметр показывает ноль. Такое состояние называется балансом моста.

Рис. 1. Измерительные мосты с сопротивлениями.

Теперь предположим, что сопртивление R3 взяло и уменьшилось (рисунок 1 Б) и, следовательно, стало меньше сопротивления R4. В этом случае, напряжение в точке соединения R3 и R4 возрастет и станет больше чем напряжение в точке соединения, по прежнему одинаковых, резисторов R1 и R2. А раз так, то стрелка вольтметра отклонится в сторону положительных напряжений.

Такое состояние называется разбалансировкой моста. Теперь, чтобы этот мост сбалансировать нужно изменить сопротивление одного из резисторов, так, чтобы напряжения в точках соединений R1-R2 и R3-R4 снова стили одинаковыми. Это можно сделать уменьшив сопротивление или уменьшив сопротивление R4 или увеличив сопротивление R2.

На рисунке 1В показан случай, когда R3 не уменьшилось, а увеличилось, что, само собой, привело к уменьшению напряжения в точке соединения R3-R4 по сравнению с напряжением в точке соединения R1-R2 (R1=R2). Стрелка вольтметра, при этом, отклонится в сторону отрицательных напряжений. А выправить балансировку моста можно будет, например, увеличив R4 или R1 или уменьшив сопротивление R2.

Напрашивается вывод, — условием баланса моста является выполнение соотношения : R1/R2 = R3/R4.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Модификации

Используя мост Уитстона, можно с большой точностью измерять сопротивление.

Различные модификации моста Уитстона позволяют измерять другие физические величины:

  • ёмкость;
  • индуктивность;
  • импеданс;
  • концентрацию газов;
  • и другое.

Прибор explosimeter (англ.) позволяет определить, превышена ли допустимая концентрация горючих газов в воздухе.

Мост Кельвина (англ. Kelvin bridge), также известный как мост Томсона (англ. Thomson bridge), позволяет измерять малые сопротивления, изобретён Томсоном.


Вид спереди прибора, построенного на основе моста Кельвина

Прибор Максвелла позволяет измерять силу переменного тока, изобретён Максвеллом в 1865 году, усовершенствован Блюмлейном около 1926 года.

Мост Максвелла (англ. Maxwell bridge) позволяет измерять индуктивность.

Мост Фостера (англ. Carey Foster bridge) позволяет измерять малые сопротивления, описан Фостером (англ. Carey Foster) в документе, опубликованном в 1872 году.

Делитель напряжения Кельвина-Варли (англ. Kelvin–Varley divider) построен на основе моста Уитстона.

Модификации

Используя мост Уитстона, можно с большой точностью измерять сопротивление.

Различные модификации моста Уитстона позволяют измерять другие физические величины:

  • ёмкость;
  • индуктивность;
  • импеданс;
  • концентрацию газов;
  • и другое.

Прибор explosimeter (англ.) позволяет определить, превышена ли допустимая концентрация горючих газов в воздухе.

Мост Кельвина (англ. Kelvin bridge), также известный как мост Томсона (англ. Thomson bridge), позволяет измерять малые сопротивления, изобретён Томсоном.


Вид спереди прибора, построенного на основе моста Кельвина

Прибор Максвелла позволяет измерять силу переменного тока, изобретён Максвеллом в 1865 году, усовершенствован Блюмлейном около 1926 года.

Мост Максвелла (англ. Maxwell bridge) позволяет измерять индуктивность.

Мост Фостера (англ. Carey Foster bridge) позволяет измерять малые сопротивления, описан Фостером (англ. Carey Foster) в документе, опубликованном в 1872 году.

Делитель напряжения Кельвина-Варли (англ. Kelvin–Varley divider) построен на основе моста Уитстона.

Измерение сопротивлений с помощью моста Уитстона

Принцип измерения сопротивления основан на уравнивании потенциала средних выводов двух ветвей (см. ).

  1. В одну из ветвей включён двухполюсник (резистор), сопротивление которого требуется измерить (Rx{\displaystyle R_{x}}).

Другая ветвь содержит элемент, сопротивление которого может регулироваться (R2{\displaystyle R_{2}}; например, реостат).

Между ветвями (точками B и D; см. ) находится индикатор. В качестве индикатора могут применяться:

  • гальванометр;
  •  — прибор, отклонение стрелки которого показывает наличие тока в цепи и его направление, но не величину. На шкале такого прибора отмечено только одно число — ноль;
  • вольтметр (RG{\displaystyle R_{G}} принимают равным бесконечности: RG=∞{\displaystyle R_{G}=\infty });
  • амперметр (RG{\displaystyle R_{G}} принимают равным нулю: RG={\displaystyle R_{G}=0}).

Обычно в качестве индикатора используется гальванометр.

  1. Сопротивление R2{\displaystyle R_{2}} второй ветви изменяют до тех пор, пока показания гальванометра не станут равны нулю, то есть потенциалы точек узлов D и B не станут равны. По отклонению стрелки гальванометра в ту или иную сторону можно судить о направлении протекания тока на диагонали моста BD (см. ) и указывают в какую сторону изменять регулируемое сопротивление R2{\displaystyle R_{2}} для достижения «баланса моста».

Когда гальванометр показывает ноль, говорят, что наступило «равновесие моста» или «мост сбалансирован». При этом:

отношение R2/R1{\displaystyle R_{2}/R_{1}} равно отношению Rx/R3{\displaystyle R_{x}/R_{3}}:

R2R1=RxR3,{\displaystyle {\frac {R_{2}}{R_{1}}}={\frac {R_{x}}{R_{3}}},}

откуда

Rx=R2R3R1;{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}};}
  • разность потенциалов между точками B и D (см. ) равна нулю;
  • ток по участку BD (через гальванометр) (см. ) не протекает (равен нулю).

Сопротивления R1{\displaystyle R_{1}}, R3{\displaystyle R_{3}} должны быть известны заранее.

  1. Изменяют сопротивление R2{\displaystyle R_{2}} до баланса моста.
  1. Вычисляют искомое сопротивление Rx{\displaystyle R_{x}}:
Rx=R2R3R1.{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}}.}

Вывод формулы см. ниже.

Точность

При плавном изменении сопротивления R2{\displaystyle R_{2}} гальванометр способен зафиксировать момент наступления равновесия с большой точностью. Если величины R1{\displaystyle R_{1}}, R2{\displaystyle R_{2}} и R3{\displaystyle R_{3}} были измерены с малой погрешностью, величина Rx{\displaystyle R_{x}} будет вычислена с большой точностью.

В процессе измерения сопротивление Rx{\displaystyle R_{x}} не должно изменяться, так как даже небольшие его изменения приведут к нарушению баланса моста.

Недостатки

К недостаткам предложенного способа можно отнести:

необходимость регулирования сопротивления R2{\displaystyle R_{2}}. На поиски «равновесия» тратится время. Гораздо быстрее измерить несколько параметров цепи и вычислить Rx{\displaystyle R_{x}} по другой формуле.

Как работает диодный мост

Ответ изображён на следующем рисунке.

Обычно на одну из диагоналей, в данном случае ас питающая диагональ , подается напряжение U от источника электрической энергии; в другую диагональ bd измерительная диагональ включают электроизмерительный прибор или какой-либо аппарат. Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Например, вот так. При этом разность потенциалов на мостовой схеме может достигать 8 В, что требует от LT тока 24 мА, хотя эта ИС способна обеспечивать ток нагрузки до мА. Принцип действия четырехплечего одинарного моста.

Для измерения сопротивлений с помощью моста Уитстона на место резисторов Ra или Rb устанавливается неизвестное сопротивление, в то время как остальные три резистора являются прецизионными и их номинал известен. Наконец, ток возвращается к положительной клемме батарейки. В зависимости от вида мостовых схем количество входящих в ее состав ветвей плеч мосты можно разделить на: четырехплечие, многоплечие, Т-образные и т. Схема управления электроприводом крана прямым способом.
Топ 5 самых популярных схем выпрямителей , умножителей, преобразователей напряжения

https://youtube.com/watch?v=JmuTG5yknJU

Измерение сопротивлений с помощью моста Уитстона

Принцип измерения сопротивления основан на уравнивании потенциала средних выводов двух ветвей (см. ).

  1. В одну из ветвей включён двухполюсник (резистор), сопротивление которого требуется измерить (Rx{\displaystyle R_{x}}).

Другая ветвь содержит элемент, сопротивление которого может регулироваться (R2{\displaystyle R_{2}}; например, реостат).

Между ветвями (точками B и D; см. ) находится индикатор. В качестве индикатора могут применяться:

  • гальванометр;
  •  — прибор, отклонение стрелки которого показывает наличие тока в цепи и его направление, но не величину. На шкале такого прибора отмечено только одно число — ноль;
  • вольтметр (RG{\displaystyle R_{G}} принимают равным бесконечности: RG=∞{\displaystyle R_{G}=\infty });
  • амперметр (RG{\displaystyle R_{G}} принимают равным нулю: RG={\displaystyle R_{G}=0}).

Обычно в качестве индикатора используется гальванометр.

  1. Сопротивление R2{\displaystyle R_{2}} второй ветви изменяют до тех пор, пока показания гальванометра не станут равны нулю, то есть потенциалы точек узлов D и B не станут равны. По отклонению стрелки гальванометра в ту или иную сторону можно судить о направлении протекания тока на диагонали моста BD (см. ) и указывают в какую сторону изменять регулируемое сопротивление R2{\displaystyle R_{2}} для достижения «баланса моста».

Когда гальванометр показывает ноль, говорят, что наступило «равновесие моста» или «мост сбалансирован». При этом:

отношение R2/R1{\displaystyle R_{2}/R_{1}} равно отношению Rx/R3{\displaystyle R_{x}/R_{3}}:

R2R1=RxR3,{\displaystyle {\frac {R_{2}}{R_{1}}}={\frac {R_{x}}{R_{3}}},}

откуда

Rx=R2R3R1;{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}};}
  • разность потенциалов между точками B и D (см. ) равна нулю;
  • ток по участку BD (через гальванометр) (см. ) не протекает (равен нулю).

Сопротивления R1{\displaystyle R_{1}}, R3{\displaystyle R_{3}} должны быть известны заранее.

  1. Изменяют сопротивление R2{\displaystyle R_{2}} до баланса моста.
  1. Вычисляют искомое сопротивление Rx{\displaystyle R_{x}}:
Rx=R2R3R1.{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}}.}

Вывод формулы см. ниже.

Точность

При плавном изменении сопротивления R2{\displaystyle R_{2}} гальванометр способен зафиксировать момент наступления равновесия с большой точностью. Если величины R1{\displaystyle R_{1}}, R2{\displaystyle R_{2}} и R3{\displaystyle R_{3}} были измерены с малой погрешностью, величина Rx{\displaystyle R_{x}} будет вычислена с большой точностью.

В процессе измерения сопротивление Rx{\displaystyle R_{x}} не должно изменяться, так как даже небольшие его изменения приведут к нарушению баланса моста.

Недостатки

К недостаткам предложенного способа можно отнести:

необходимость регулирования сопротивления R2{\displaystyle R_{2}}. На поиски «равновесия» тратится время. Гораздо быстрее измерить несколько параметров цепи и вычислить Rx{\displaystyle R_{x}} по другой формуле.

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Схема устройства стабилизатора напряжения

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.

Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Силовой трансформатор

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Диодный мост

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Оцените статью:
Оставить комментарий
Adblock
detector