Анод на аккумуляторе и в других приборах, процессы на аноде и знак анода

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот. Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом

Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Как узнать где у конденсатора полярность

У большинства элементов принята боле-менее однообразная система маркировки полярности. Обозначение полярности конденсатора имеет несколько типов, которые нетрудно запомнить:

  • Внешний вид (форма корпуса, длина и толщина ножек);
  • Маркировка (нанесение соответствующих символов у выводов или на корпусе);
  • Обозначения на электронных схемах.

По внешнему виду

Как определить полярность конденсатора по внешнему виду? Наиболее просто это сделать для приборов с цилиндрическим корпусом, у которых выводы расположены на противоположных торцах (аксиальный тип корпуса). Даже если маркировка полностью стерта, то тот вывод, который присоединен напрямую к металлическому корпусу, имеет знак «минус».

Вывод, установленный на корпусе через изолятор (в данном месте обычно имеется утолщение или изменение формы корпуса) соответствует положительной полярности, то есть «плюс».


Аксиальная форма корпуса

Новые, не спаянные типы алюминиевых конструкций с ножками, расположенными в непосредственной близости друг к другу (радиальный корпус), имеют более длинный положительный вывод.

Иногда в старой аппаратуре можно встретить электролитические конденсаторы с одним выводом, которые крепятся к корпусу конструкции при помощи гайки. Здесь гайка – «минус», вывод «плюс».

Вам это будет интересно Все об пайке


Гаечное крепление

Еще реже попадаются элементы также с гаечным креплением, но с двумя выводами. Принцип маркировки во многом схож с предыдущим случаем, но здесь мы имеем дело со сдвоенным конденсатором, у которого общий «минус» находится на корпусе, а «плюс» расположен на выводах (каждый вывод соответствует отдельной емкости).

По маркировке

Производители также наносят маркировку на корпусе элементов. Здесь может быть несколько вариантов:

  • Знак «минус» на боковой поверхности цилиндра со стороны отрицательного вывода;
  • Знак «плюс» непосредственно у положительной ножки элемента;
  • Широкая темная полоса на торце напротив отрицательного вывода (обычно у твердотельных электролитических конденсаторов.

Обратите внимание! Для SMD компонентов обозначение обратное – широкая светлая или темная полоса возле положительной площадки. Маркировка твердотельных и SMD компонентов


Маркировка твердотельных и SMD компонентов

По схеме

На электрических схемах конденсаторы обозначаются в виде двух параллельных линий, которые символизируют обкладки. Возле положительного вывода ставят символ «+», или этот вывод обозначают более толстой линией, либо в виде узкого прямоугольника.

Некоторые производители электроники рисуют на схемах отрицательный вывод в виде отрезка дуги.


Обозначение на принципиальных схемах

Не печатных платах электролитический конденсатор имеет такие обозначения полярности:

  • Как на электрических принципиальных схемах;
  • В виде круга, у которого закрашен узкий сегмент в месте пайки отрицательного вывода.

Цветное обозначение проводов «плюс» и «минус»

Во избежание короткого замыкания в сети провода, «плюс» и «минус» нельзя путать ни в коем случае.
Маркировка электропроводки необходима для быстроты и легкости определения напряжения. Это является одним из требований ПУЭ.

Для точного обозначения производители делают «минус» голубого или зеленого цвета, а «плюс» – коричневого, красного, черного или белого цвета. Если в кабеле 3 проводника и один желтый с продольными зелеными линиями, то это – заземление.

Маркировка проводов по цвету

Важно! Перед началом работы лучше проверить все провода на наличие напряжения, несмотря на маркировки по цвету, чтобы избежать опасности короткого замыкания или удара током. Прокладывать проводку мог неопытный электрик или человек, не имеющий представление о маркировке, и цвета могут не соответствовать

Существует два вида тока в электричестве. Постоянный ток не может быть передан на большое расстояние, поэтому в быту используют переменный ток. Постоянный ток используют в следующих направлениях:

  • В промышленности, строительном оборудовании, строительстве, сельском хозяйстве;
  • В городских транспортных средствах (трамваи, троллейбусы, метро, поезда);
  • На электрических подстанциях, где он трансформируется в переменный ток, и его передают потребителю.

Важно! Только два проводника используется в сетях постоянного тока. Здесь не бывает фазы или ноля, только «плюс» и «минус»

В данном случае, используют «плюс» с красным цветом, а синим обозначают провод с «минусом».

Характеристики конденсатора

Основной характеристикой любого конденсатора является его емкость, которая определяет количество накопленного заряда. Емкость зависит от площади обкладок и толщины слоя диэлектрика.

Внимание! Площадь пластин нельзя увеличивать бесконечно, поскольку это приводит к росту габаритов и массы устройства. Толщину диэлектрического слоя также можно снижать только до определенного значения, поскольку любой изолятор имеет свой предел электрической прочности

В связи с этим второй основной характеристикой является рабочее напряжение, при котором конденсатор сохраняет свои свойства на протяжении всего срока службы

Толщину диэлектрического слоя также можно снижать только до определенного значения, поскольку любой изолятор имеет свой предел электрической прочности. В связи с этим второй основной характеристикой является рабочее напряжение, при котором конденсатор сохраняет свои свойства на протяжении всего срока службы.

Превышение рабочего напряжения приводит к электрическому пробою и нарушению функционирования прибора, в частности, в некоторых областях применения требуется учитывать дополнительные параметры, а именно:

  • Температурный коэффициент, учитывающий влияние нагрева на емкость радиоэлемента;
  • Тангенс угла диэлектрических потерь, характеризующий свойства радиоэлемента при работе на высоких частотах;
  • Полярность включения, возникающая вследствие конструктивных особенностей некоторых типов устройств.

Для увеличения емкости при сохранении приемлемых габаритов, приходится применять различные технические тонкости. Например, в электролитических конденсаторах в качестве одной из обкладок используется узкая и длинная полоса из алюминиевой фольги. Тонкий слой оксида на поверхности фольги является изолятором, а вместо второй обкладки используется жидкий электролит. При изготовлении такого конденсатора лист фольги скручивается в тонкий цилиндр, который затем помещается в корпус.

Вам это будет интересно Какой электрический ток опаснее для человека и почему


Электролитический конденсатор

Подобная конструкция совмещает большую площадь обкладок и малую толщину диэлектрика, что позволяет получать очень большие значения емкости при малых габаритах.

Основным недостатком таких конденсаторов является необходимость строгого соблюдения полярности подключения. Невыполнение этого требования приводит к возникновению больших токов, утечкам и разрушению конструкции. Электролитические конденсаторы должны иметь маркировку полярности для правильного подключения.

Основные свойства катодов

Любой электровакуумный прибор имеет электрод, предназначенный для испускания (эмиссии) электронов. Этот электрод называется катодом. Электрод, предназначенный для приема эмиттированных катодом электронов, называется анодом. На анод подают более высокий и положительный относительно катода потенциал. Катод должен отдавать с единицы поверхности большой ток эмиссии при возможно низкой температуре нагрева и обладать большим сроком службы. Нагрев катода в электровакуумном приборе производится протекающим по нему током.

Будет интересно Что такое шаговое напряжение и чем оно опасно

Такие термоэлектронные катоды разделяются на две основные группы:

  • катоды прямого накала,
  • катоды косвенного накала (подогревные).

Катоды прямого накала представляют собой металлическую нить, которая непосредственно разогревается током накала и служит для излучения электронов.Поверхность излучения катодов прямого накала невелика, поэтому от них нельзя получить большой ток эмиссии. Малая теплоемкость нити не позволяет использовать для нагрева переменный ток. Кроме того, при нагреве переменным током температура катода не постоянна во времени, а следовательно, меняется во времени и ток эмиссии.

Положительным свойством катода прямого накала является его экономичность, которая достигается благодаря малому количеству тепла, излучаемого в окружающую среду вследствие малой поверхности катода. Катоды прямого накала изготовляются из вольфрамовой и никелевой проволоки. Однако большая работа выхода (W = 4,2÷4,5 в) определяет высокую рабочую температуру катода, вследствие чего катод становится неэкономичным. Для повышения экономичности катода вольфрамовую или никелевую проволоку (керн) «активируют» — покрывают пленкой другого элемента. Такие катоды называются активированными.

Если на поверхность керна нанесена электроположительная пленка (пленка из цезия, тория или бария, имеющих меньшую работу выхода, чем материал керна), то происходит поляризация пленки: валентные электроны переходят в керн, и между положительно заряженной пленкой и керном возникает разность потенциалов, ускоряющая движение электрона при выходе его из керна.

Работа выхода катода с такой мономолекулярной электроположительной пленкой оказывается меньше работы выхода электрона как из основного металла, так и из металла пленки. При покрытии керна электроотрицательной пленкой, например кислородом, работа выхода катода увеличивается. Подогревные катоды выполняются в виде никелевых гильз, поверхность которых покрывается активным слоем металла, имеющим малую работу выхода. Внутри катода помещается подогреватель— вольфрамовая нить или спираль, подогрев которой может осуществляться как постоянным, так и переменным


Как работает гальванизация.

током.

Для изоляции подогревателя от гильзы внутренность последней покрывается алундом (Аl2O3). Подогревные катоды, благодаря их большой тепловой инерции, обычно питают переменным током, значительная поверхность гильзы обеспечивает большой эмиссионный ток. Подогревные катоды, однако, менее экономичны и разогреваются значительно дольше, чем катоды прямого накала.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Понятие анода и катода

Для лучшего понимания терминов дадим определения этих понятий.

Анод

Под данным термином будем подразумевать электрод, по которому электрический ток втекает в разглядываемый прибор. При этом подразумевается, что электрический ток образуется потоком положительных зарядов. В действительности, по металлическим проводникам перемещаются электроны (носители отрицательных зарядов), которые движутся в сторону положительного полюса источника электрического тока.

Проще говоря, положительным электродом будем считать анод, а отрицательным электродом – катод. При подключении радиоэлементов следует соблюдать их полярность, руководствуясь обозначениями на схемах.

Катод

Это электрод, по которому электрический ток вытекает с прибора (подразумевается конвенциальное понимание тока, в виде потока положительных зарядов). Таким образом, если к аноду подключается провод с положительным потенциалом, то к катоду – клеммы с отрицательными потенциалами.

Вышеуказанные термины применяются по отношению к гальваническим элементам. В гальванике анод – это электрод, на поверхности которого проходит реакция окисления металла. Названия электродов встречаются:

  • в химии;
  • физике;
  • электротехнике;
  • радиоэлектронике.

При монтаже радиодеталей очень важно не перепутать электроды. Для этого необходимо знать, как определить их назначение

Пояснение работы кремниевого диода

При изготовлении диодов применяются полупроводниковые материалы. Например, такой полупроводник как кремний. Работа диода основана на понятии движения свободных носителей зарядов.  Однако, считается что чистый кремний не имеет свободных носителей. И это не практично при изготовлении диодов. Потому, для диодов применяют кремний с добавками. В единый кристалл кремния добавляют примеси. То есть легируют кремний. С одной стороны диода, кремний легирован донорной примесью. То есть это отдающая сторона — донор. Эта область обладает проводимостью n-типа. От английского слова negative — отрицательная (минус). Считается что на n-стороне находятся свободные электроны. Эта область имеет малое удельное сопротивление электрическому току.

С другой стороны диод легирован акцепторной примесью. То есть это принимающая сторона — акцептор.  Эта область обладает проводимостью p-типа. От английского слова positive — положительная (плюс). Считается что на p-стороне находятся свободные места для электронов (дырки). Эта область также обладает малым сопротивлением электрическому току. На границе p-n-перехода происходит явление рекомбинации. В переводе с латыни означает «соединение». Другими словами, исчезновение пары свободных носителей противоположного заряда в среде с выделением энергии. 

Устройство диода

Считается что электроны n-стороны стремятся занять дырки с p-стороны. А дырки наоборот стремятся перетечь на n-сторону. Для того чтобы их место заняли электроны. При этом возникает диффузный ток. Другими словами, электроны и дырки хаотично перетекают в противоположные стороны. Соединяются друг с другом. И свободные носители исчезают.

Оцените статью:
Оставить комментарий
Adblock
detector