Лучшие проводники электрического тока

Почему вода проводит электричество

В жидких веществах причиной появления электричества являются ионы. Когда они начинают под действием электрического поля упорядоченно двигаться, возникает ток. Абсолютно чистая вода – это нейтральная молекула, диэлектрик, и ток она не проводит.

Иногда, очень редко, молекулы воды тоже распадаются на ионы, поэтому проводимость нельзя считать равной абсолютному нулю. Но она настолько мала при нормальных условиях, что ею пренебрегают.

Если добавить в воду соль какого-либо металла, то образуются ионы и жидкость станет проводником. Чем больше солей растворится, тем большей проводимостью станет обладать вода.

Происходит это потому, что молекула воды полярная. Она притягивается к молекуле соли и разрывает ее на части. Так образуются ионы.

Поскольку в природе и в водопроводной трубе вода всегда с примесями, то электричество она проводит.

Поверхность нашего тела тоже всегда влажная и немного соленая. Следовательно, тело тоже проводит электричество. Еще лучше, чем кожа, проводит электричество кровь, желудочный сок, мышцы, моча

По этой причине человек очень подвержен влиянию электричества и должен осторожно с ним обращаться

Нужно ли заземление в частном доме

При использовании в доме любых электроприборов всегда есть риск повреждения изоляции проводов или замыкание их на корпус. В таком случае любое касание человека опасной зоны приводит к поражению электрическим током, которое может закончиться трагически. Ток всегда стремится в землю, а человеческое тело становится проводником, соединяющим поврежденный прибор с землей.

Что дает заземление? По сути, это система, предоставляющая кратчайший путь электрическому току. По закону физики он выбирает проводник с наименьшим электрическим сопротивлением, и контур обладает таким свойством. Практически весь ток направляется в заземлитель, а потому через тело человека пройдет лишь незначительная его часть, которая не сможет причинить вред. Таким образом, контур заземления обеспечивает электробезопасность. Нормативные документы (ГОСТы, СНиП, ПУЭ) указывают, что любое частное, жилое строение должно быть им оборудовано при сетях переменного тока на напряжение выше 40 В и переменного тока – выше 100 В.

Кроме обеспечения безопасности, заземляющая система повышает надежность и долговечность бытовой техники. Она обеспечивает стабильную работу установок, защиту от перенапряжений и различных помех в сети, снижает воздействие внешних источников электромагнитных излучений.

Заземление не следует путать с громоотводами (молниеотводами). Хотя принцип их действия аналогичен, выполняют они разную задачу. Работа громоотвода заключается в отведении в землю разряда молнии при ее попадании в дом. В этом случае возникает мощный электрический заряд, который не должен попадать во внутреннюю сеть, т.к. способен просто расплавить провод или кабель. Именно поэтому линия громоотвода пролегает от приемников на крыше по внешнему контуру и не должна совмещаться с заземляющей, внутренней линией. У громоотвода и заземления может быть общий подземный контур (если имеет запас по сечению), но разводка обязательно разделяется.

Проводник — электричество

Проводник электричества — это твердое тело, в котором есть много свободных электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие поле вначале. В условиях электростатики мы не рассматриваем непрерывных источников тока ( о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. Как правило, это происходит в малые доли секунды. Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.

Теоретические и экспериментальные значения.

Проводник электричества характеризуется тем, что его электроны очень подвижны.

Схема электролиза.

Проводники электричества бывают двух родов — соответственно характеру движения — по ним электрического тока.

Проводники электричества — тела, в которых могут быть созданы электрические токи.

Проводники электричества — тела, в которых могут быть созданы электрические токи проводимости.

Проводники электричества — тола, п которых могут возникать электрические токи. Электрические токи могут возникать в том случае, когда в телах существуют или образуются носители электрических зарядов. Такое упорядоченное движение электрических зарядов и представляет собой электрический ток. В электролитах носителями зарядов являются ионы — части молекул растворенного вещества.

Проводники электричества — тела, в которых могут быть созданы электрические токи.

Пусть проводник электричества, заключенный в трубку ( см. рис. VIII.

Образец диаграммы электрического каротажа.

Поскольку проводником электричества является вода, заключенная в порах породы, для интерпретации кривых электрического каротажа необходимо знать факторы, влияющие на сопротивление воды. Чистая от примесей вода не проводит электрический ток. Растворенные в воде соли образуют заряженные ионы, которые переносят электроны или электрические заряды. Проводимость раствора определяется концентрацией и мобильностью ионов. Мобильность ионов в растворе зависит от двух факторов — природы ионов и температуры. Ион каждого химического соединения обладает своей подвижностью. Однако определение проводимости раствора на основании химического анализа и использования данных о мобильности отдельных ионов является непрактичным.

Образец диаграммы электрического каротажа.

Поскольку проводником электричества является вода, заключенная в порах породы, для интерпретации кривых электрического каротажа необходимо знать факторы, влияющие на сопротивление воды. Чистая от примесей вода не проводит электрический ток. Растворенные в воде соли образуют заряженные ионы, которые переносят электроны или электрические заряды. Проводимость раствора определяется концентрацией и мобильностью ионов. Мобильность ионов в растворе зависит от двух факторов — природы ионов и температуры. Ион каждого химического соединения обладает своей подвижностью. Однако определение проводимости раствора на основании химического анализа и использования данных о мобильности отдельных ионов является непрактичным.

У всех проводников электричества наблюдаются флуктуации электрического напряжения ( тока), или шумы. В полупроводниковых диодах следует различать четыре основные составляющие внутреннего шума: тепловой шум, дробовой шум, 1 / / — шум, шум в области пробоя р-п перехода на обратной ветви вольтамперной характеристики.

Вариант 2

1. Внутри стены проложена электропроводка. Как, не вскрывая стену, можно обнаружить расположение проводов?

2. Какое действие тока позволяет покрывать золотом ювелирные изделия?

3. В коробке перемешаны медные винты и железные шурупы. Какое действие тока позволит их рассортировать?

4. Какое преимущество имеют лампы дневного света перед лампами накаливания?

5. Какое направление тока условно принято в физике? В чем заключается противоречие с действительным движением заряженных частиц?

Ответы на самостоятельную работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 классаВариант 1
1. Электрический ток в металлах создают электроны. В узлах кристаллической решетки находятся положительные ионы и атомы.
2. Магнитное действие тока. Вентилятор используется для охлаждения воздуха в окружающем пространстве.
3. Поднять батарейку на сантиметр от поверхности, если батарейку при падении не упала, то она заряжена, если батарейка упала, то батарейка разряжена.
4. Можно создать электромагнит, который будет притягивать к себе стальные детали. После сортировки, изменяя силу тока в магните, можно отделить материалы, в которых большое содержание магнитных веществ, от материалов, у которых это содержание не велико.
5. Лампа демонстрирует тепловые и световые действия тока.Вариант 2
1. С помощью магнитной стрелки, если поднести ее к стене, в том месте где стрелка начнет отклонятся находятся провода.
2. Химическое действие тока в процессе электролиза.
3. Собрать магнит, на медь магнитное поле действовать не будет, а железные шурупы притянутся к нему.
4. Лампы дневного света потребляют меньше энергии. Энергосберегающие лампы выделяют меньше тепла, а светят ярче. Быстро разгораются.
5. В физике принято считать, что за направление тока берут направление движения положительных частиц, то есть от положительного полюса источника к отрицательному. Противоречие в том, что считается что ток создаются отрицательно заряженные частицы — электроны.

Зависимость сопротивления от температуры

Самое распространенное действие тока – это тепловое действие. Как уже было отмечено в прошлой главе, механизмом этого действия является столкновение электронов с узлами кристаллической решетки, в результате чего кинетическая энергия электронов переходит во внутреннюю энергию проводника.

В свою очередь, имея повышенную внутреннюю энергию, узлы решетки начинают колебаться быстрее, чаще сталкиваясь с электронами. То есть электроны тормозятся более эффективно. Иными словами при увеличении температуры проводника увеличивается его электрическое сопротивление.

Простым опытом, подтверждающим этот теоретический вывод, может служить нагревание проводника в цепи со включенной лампой и измерительными приборами (см. рис. 3).

Рис. 3.

По мере прогревания проводника как лампа начнет светить менее ярко, так и приборы станут показывать падение силы тока.

После качественного подтверждения зависимости сопротивления от температуры была получена количественная зависимость. После ряда экспериментов было выяснено, что относительное приращение сопротивления прямо пропорционально абсолютному приращению температуры:

Или же:

Здесь:   – сопротивление при заданной температуре,  – сопротивление при температуре ;  – изменение температуры относительно  ;  – температурный коэффициент сопротивления. Температурный коэффициент – табличная величина, известная для большинства металлов. Размерность коэффициента:

Так как при изменении температуры линейные размеры проводников меняются незначительно, значит, меняется удельное сопротивление, причем по такому же закону:

Применение сверхпроводимости

Применение сверхпроводимости чрезвычайно облегчает многие технические аспекты использования электрического тока. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание, которые, как правило, составляют  15% всей энергии. Как подтверждение можно привести опыт по двухгодичному пропусканию тока через проводник, погруженный в жидкий гелий, который прервался только из-за нехватки гелия

Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники

Кроме того в сверхпроводниках протекают из-за отсутствия сопротивления чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе.

Бытовой пример использования сверхпроводников – это существующая на сегодняшний момент железнодорожная сеть с поездами на магнитной подушке (рис. 6):

Рис. 6. Поезд на магнитной подушке

Высокотемпературные сверхпроводники

После открытия сверхпроводимости Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты.

Также чрезвычайно важное открытие было сделано в 1986 году. Были обнаружены материалы, обладающие сверхпроводимостью при температурах около. Такие температуры возможно получать, используя жидкий азот, который значительно дешевле жидкого гелия

Однако при попытке создания таких сверхпроводящих проводов и кабелей столкнулись с проблемой чрезвычайной хрупкости таких материалов, которые рассыпаются в процессе прокатки. На данный момент продолжаются работы по решению этой проблемы

Такие температуры возможно получать, используя жидкий азот, который значительно дешевле жидкого гелия. Однако при попытке создания таких сверхпроводящих проводов и кабелей столкнулись с проблемой чрезвычайной хрупкости таких материалов, которые рассыпаются в процессе прокатки. На данный момент продолжаются работы по решению этой проблемы.

На следующем уроке мы рассмотрим электрический ток в полупроводниках.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Storage.mstuca.ru (Источник).
  2. Physics.ru (Источник).
  3. Элементы (Источник).

Домашнее задание

  1. Как зависит сопротивление металлов от температуры? Чем обусловлена такая зависимость?
  2. Во сколько раз увеличится сопротивление медного провода при повышении температуры от 200 до 300?
  3. На подключенную в сеть спираль электроплитки попала вода. Как изменилось накаливание плитки?
  4. *Все ли металлы становятся сверхпроводниками при охлаждении до достаточно низких температур?

Формула определения длины проводника

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

L = R / r*s,

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Почему вода проводит электричество

В жидких веществах причиной появления электричества являются ионы. Когда они начинают под действием электрического поля упорядоченно двигаться, возникает ток. Абсолютно чистая вода – это нейтральная молекула, диэлектрик, и ток она не проводит.

Иногда, очень редко, молекулы воды тоже распадаются на ионы, поэтому проводимость нельзя считать равной абсолютному нулю. Но она настолько мала при нормальных условиях, что ею пренебрегают.

Если добавить в воду соль какого-либо металла, то образуются ионы и жидкость станет проводником. Чем больше солей растворится, тем большей проводимостью станет обладать вода.

Происходит это потому, что молекула воды полярная. Она притягивается к молекуле соли и разрывает ее на части. Так образуются ионы.

Поскольку в природе и в водопроводной трубе вода всегда с примесями, то электричество она проводит.

Поверхность нашего тела тоже всегда влажная и немного соленая. Следовательно, тело тоже проводит электричество. Еще лучше, чем кожа, проводит электричество кровь, желудочный сок, мышцы, моча

По этой причине человек очень подвержен влиянию электричества и должен осторожно с ним обращаться

Проект «Какие вещества проводят электричество при растворении в воде»

Электрический
поток – результат движения электрически
заряженных частиц(электричества) под
действием
сил приложенного к ним электрического
поля. Чистая вода плохо проводит
электричество, но некоторые элементы,
растворенные в ней, позволяют ей проводить
ток. Такие вещества при растворении
образуют ионы (заряженные частицы),
которые переносят заряд внутри раствора.
Растворы, обладающие этим свойством,
называются электролитами. Чем больше
ионов в растворе, тем выше его проводимость.
Неэлектролиты – растворы, не содержащие
ионы и не проводящие ток. Электролиты
могут быть слабыми или сильными. Это
зависит от того, как они ионизируются:
полностью или частично.

Проводимость
раствора можно измерить при помощи
устройства проводимости, состоящего
из двух металлических электродов, обычно
располагаемых на расстоянии 1 см (именно
поэтому она измеряется в микросименсах
или миллисименсах на сантиметр). На оба
электрода подается постоянное напряжение.
Это вызывает электрический ток в
растворе. Поскольку он пропорционален
количеству ионов в воде, проводимость
можно измерить. Чем выше концентрация
ионов, тем выше проводимость образца.

Устройство
проводимости обычно используется в
гидропонике, бассейнах, а также системах
очистки воды для отслеживания количества
питательных веществ, солей или загрязнений.

Раствор
некоторых веществ в воде проводит
электричество. Эти вещества при
растворении образуют ионы, и эти ионы
переносят заряд через раствор. Этот
проект
направлен на то, чтобы собрать устройство
для выявления того, раствор каких веществ
может проводить электричество,
а каких – нет.

В
фокусе этого проекта – создание
устройства, которое позволило бы
определить, какие вещества, будучи
растворенными, могут проводить
электричество – и каким типом электролита
они в этом случае являются.

Что
нам понадобится:

  • устройство проводимости;
  • пластиковые стаканчики;
  • большие скрепки;
  • изолента;
  • разные виды воды: дистиллированная, минеральная, газированная;
  • уксус;
  • сахар;
  • соль.

Ход
эксперимента:

  1. Эксперименты с электричеством в домашних условиях требуют внимательности. Не глотайте вещества, используемые в этом опыте!
  2. Приготовьте разные виды воды.
  3. Приготовьте растворы соли и сахара, растворив их в дистиллированной воде.
  4. Налейте жидкость в стаканчик.
  5. Разогните скрепки, закрепив их изолентой на противоположных сторонах стаканчика.
  6. Не помещайте контакты прямо в раствор, иначе со временем они заржавеют. Вместо этого поместите их на скрепки, а скрепки опустите в раствор.
  7. Результаты наблюдений отобразите в таблице и в виде графика. В зависимости от того, какое устройство проводимости вы используете, отметьте, горят ли LED-лампы и степень их яркости. Ополаскивайте стаканчик и скрепки дистиллированной водой между опытами.
  8. Если неподалеку есть источник, проверьте воду из него на проводимость. Если она проводит электричество, подумайте, какие вещества могли быть в нем растворены и откуда они могли взяться.
  9. Отметьте галочкой поле, соответствующее свету, производимому LED-лампой. В зависимости от яркости лампы распределите жидкости на сильные, средние, слабые электролиты или неэлектролиты.
Интенсивность света/ жидкость Яркий Средней яркости Слабый Нет света Тип электролита
Дистиллированная
Из-под крана
Минеральная
Дождевая
Раствор соли
Раствор сахара
Газированная
Уксус

Вывод:

Что
такое электричество? Что такое электролит?
Что такое проводимость? Какие вещества
оказались хорошими электролитами по
результатам опыта? Посмотрите на этикетку
бутылки минеральной воды. Как вы думаете,
какие вещества в ее составе помогают
проводить ток? Посмотрите на этикетку
бутылки газированной воды. Как вы
думаете, какие вещества в ее составе
помогают проводить электричество?
Жидкая паста внутри батареек для фонарика
– электролит. Какие из протестированных
веществ могли бы использоваться в
качестве такого электролита? Подумайте,
какие еще опыты
с электричеством в домашних условиях
можно провести на основе проведенного
проекта.

Оцените статью:
Оставить комментарий