Rc цепь

§ 66. Цепь переменного тока, содержащая емкость

Если в цепь постоянного тока включить конденсатор (идеальный — без потерь), то в течение очень короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, равного напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи, или, иными словами, бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. В течение первой четверти периода, когда напряжение сети будет возрастать (рис. 143), конденсатор будет заряжаться.

Рис. 143. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимального значения Um, напряжение конденсатора также станет равным Um, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле

i = Δq/Δt,

где Δq — количество электричества, протекающее по цепи за время Δt.

Из электростатики известно:

q = CuC = Cu,

где С — емкость конденсатора;

u — напряжение сети;

uС — напряжение конденсатора.

Окончательно для тока имеем

i = C ΔuC/Δt = C Δu/Δt.

Из последнего выражения видно, что, когда Δu/Δt максимально (положения а, в, д), i также максимально.

Когда Δu/Δt = 0 (положения б, г на рис. 143), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное.

В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд.

Из рис. 143 видно, что ток I в цепи с емкостью в своих изменениях опережает по фазе напряжение конденсатора на 1/4 периода, или 90°.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Пользуясь высшей математикой, можно доказать, что ток в цепи с емкостью пропорционален напряжению UС, приложенному к конденсатору, угловой частоте со и величине емкости конденсатора С;

I = UСωС = 2πfСUС.

Обозначим

xC = 1/2πfC = 1/ωC.

Величина xС называется емкостным сопротивлением, или реактивным сопротивлением емкости, и измеряется в омах. Выражение закона Ома для цепи переменного тока, содержащей емкость, имеет вид

I = U/xC.

Та часть напряжения сети, которая приложена к конденсатору, называется емкостным падением напряжения (или реактивной слагающей напряжения) и обозначается UC:

UC = I ⋅ xC.

Емкостное сопротивление хС, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 6. Определить сопротивление конденсатора емкостью 5 мкф при частоте 50 гц:

xС = 1/2πfС = 1/2⋅3,14⋅50⋅5⋅10-6 = 636 ом,

при частоте 400 гц:

xС = 1/2⋅3,14⋅400⋅5⋅10-6 = 79,5 ом.

На рис. 144 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

Рис. 144. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту, когда напряжение на нем равно максимальному значению, можно определить по известной формуле CUм2/2.

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без ее потерь.

Поэтому средняя за период мощность, или активная мощность, цепи с емкостью равна нулю, как и в цепи с индуктивностью.

Из графика, изображенного на рис. 144, видно, что мгновенная мощность в цепи с емкостью два раза в течение каждого периода (когда ωt = 45°, 135° и т. д.) достигает максимального значения, равного Uм/√2 ⋅ Iм/√2 = UI.

Этой величиной принято характеризовать количественно процесс обмена энергии между источником и электрическим полем конденсатора. Ее также называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = IxC, получим следующее выражение для реактивной мощности:

Q = I2xC.

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением, модуль которого XL=ωL{\displaystyle X_{L}=\omega L}, где L{\displaystyle L} — индуктивность катушки, ω{\displaystyle \omega } — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока I{\displaystyle I}. Эта энергия равна:

Векторная диаграмма в виде комплексных амплитуд для идеальной катушки индуктивности в цепи синусоидального напряжения

Катушка индуктивности в переменном напряжении — аналог подверженного механическим колебаниям тела с массой.

Eсохр=12LI2.{\displaystyle E_{\mathrm {\text{сохр}} }={1 \over 2}LI^{2}{\mbox{.}}}

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

ε=−LdIdt.{\displaystyle \varepsilon =-L{dI \over dt}{\mbox{.}}}

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

|ε|=−ε=U.{\displaystyle |\varepsilon |=-\varepsilon =U{\mbox{.}}}

При замыкании катушки с током на резистор происходит переходной процесс, при котором ток в цепи экспоненциально уменьшается в соответствии с формулой:

I=Iexp(−tT),{\displaystyle I=I_{0}exp(-t/T){\mbox{,}}}

где : I{\displaystyle I} — ток в катушке,

I{\displaystyle I_{0}} — начальный ток катушки,
t{\displaystyle t} — текущее время,
T{\displaystyle T} — постоянная времени.

Постоянная времени выражается формулой:

T=L(R+Ri),{\displaystyle T=L/(R+R_{i}){\mbox{,}}}

где R{\displaystyle R} — сопротивление резистора,

Ri{\displaystyle R_{i}} — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени Ti{\displaystyle T_{i}} катушки:

Ti=LRi.{\displaystyle T_{i}=L/R_{i}{\mbox{.}}}

При стремлении Ri{\displaystyle R_{i}} к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

F =mdvdt{\displaystyle F\ =m{dv \over dt}} |ε|=LdIdt{\displaystyle |\varepsilon |=L{dI \over dt}},

где

F {\displaystyle F\ } |ε|{\displaystyle |\varepsilon |} U {\displaystyle U\ } ; m {\displaystyle m\ } L {\displaystyle L\ } ; dv {\displaystyle dv\ } dI {\displaystyle dI\ }
Ecoxp=12LI2{\displaystyle E_{\mathrm {coxp} }={1 \over 2}LI^{2}} Ekinet=12mv2{\displaystyle E_{\mathrm {kinet} }={1 \over 2}mv^{2}}

Где и зачем применяются конденсаторы

Где и почему используются эти приборы, которые могут работать в радиотехнических, электронных и электротехнических устройствах? Накопители используются в электротехнике при включении асинхронных моторов для сдвига фаз, без чего двигатель в составе однофазной цепи не будет функционировать. Если ёмкость составляет несколько фарад, то их применяют в электромобилях для питания мотора.

Применение возможно в разных сферах

Правильное использование этих приборов позволит получить лучший результат. Понимание основных принципов физики упрощает эксплуатацию оборудования. Неправильное применение чревато негативными последствиями, вызванными несоблюдением техники безопасности.

Мощности

Мгновенное значение мощности р = ui = Uмsin (ωt + φ) Iм sin ωt = UмIмsin (ωt + φ) sin ωУчитывая, что

sin (со/ + φ) sin ωt = 1/2cos φ — 1/2cos(2ωt + φ)

а также (5-28), можно написать другое выражение ной мощности

Р =UI cos φ — UI cos (2ωt + φ)

Написанное выражение состоит из двух членов: постоянного, независимого от времени UI cos φ и переменного си-

нусоидального UIcos (2ω+ φ).Среднее значение мощности за период, которым обычно пользуются при расчете цепей переменного тока, будет равно постоянному члену UIcos φ, так как среднее значение за период синусоидальной функции равно нулю.

Таким образом, среднее значение мощности цепи равно произведению действующих значений напряжения и тока, умноженному на cos φ, т.е.

P = UI cos φ.

Так как cos φ = U r/z = Ir Ua,

P = UаI2r

Следовательно, средняя мощность цепи равна среднему значению мощности в активном сопротивлении. Поэтому среднюю мощность любой цепи называют; еще и активной мощностью.

Реактивная мощность цепи

Q = ULI= I2xL = I2z sin φ = UI sin φ

т.е. реактивная мощность цепи равна произведению действующих значений напряжения и тока, умножен ному на sin φ.

Рис.5-21. Треугольник мощностей

Полной мощностью цепи называется произведение действующих значений напряжения и тока, т. е.

UI

Учитывая, что sin2 φ + cos2 φ = 1 можно написать: (UI cos φ)2 + (UIsin φ)2 = (UI)2

или, что то же,

 P2 + Q2 = S2,

следовательно,

S = (P2 + Q2)

Мощности Р, Q и S графически можно изобразить сторонами прямоугольного треугольника — треугольника мощностей (рис 5-21), который можно получить из треугольника напряжений, умножая на I все его стороны.

т.еотношение активной мощности к полной называется коэффициентом мощности.

Единица полной мощности с называется вольт-ампер (в •а).

Необходимость применения понятия полной мощности обусловлена тем, что конструкция, габариты, вес и стоимость машины или аппарата определяются их номинальной полной мощностью Sн = UнIна полная мощность S при том или ином режиме работы их определяет степень их использования.

Статья на тему Цепь с активным сопротивлением

  • ← Предыдущая
  • Следующая →
  • Главная Электротехника

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Катушка индуктивности в цепи переменного тока

В цепи переменного тока в катушке индуктивности происходит следующий процесс:

  1. ток возбуждает в катушке электромагнитное поле. Поскольку он переменный, то и параметры электромагнитного поля во времени меняются, то есть оно тоже переменное;
  2. переменное магнитное поле в соответствии с законом электромагнитной индукции возбуждает в самой катушке ЭДС. Ее так и называют — ЭДС самоиндукции. Она всегда идет против направления изменения силы тока. Следовательно, в первой половине полупериода, когда сила тока возрастает, катушка это нарастание сдерживает. При этом часть энергии электричества накапливается в формируемом катушкой магнитном поле;
  3. во второй половине полупериода, катушка, наоборот, противостоит снижению силы тока, возвращая в цепь накопленную в виде магнитного поля энергию.

Таким образом, катушка индукции оказывает сопротивление источнику переменного тока. Это сопротивление имеет иную природу, нежели активное, преобразующее электрическую энергию в тепло.

Сопротивление катушки энергию не потребляет, а лишь аккумулирует ее и затем снова возвращает в цепь, меняя характер протекания в ней тока. Его называют индуктивным. В противоположность активному, оно, как и емкостное сопротивление конденсатора, является реактивным.

Эффект проявляется тем сильнее, чем выше частота переменного тока, то подтверждается формулой расчета индуктивного сопротивления: XL = w*L = 2 π * f * L, где:

  • XL — индуктивное сопротивление, Ом;
  • W — круговая частота переменного тока, рад/с;
  • F — частота переменного тока, Гц;
  • L — индуктивность катушки, Гн.

Индуктивное сопротивление, несмотря на иной принцип действия, измеряется в тех же единицах, что и активное — Омах. Таким образом, в цепях переменного тока катушка индуктивности выступает ограничителем силы тока и нагрузку, в отличие от цепи постоянного, вводить не требуется.

Зависимость индуктивного сопротивления катушки от частоты тока позволяет использовать данный элемент помимо прочего, для фильтрации высокочастотных помех или сигналов. Например, при установке его в схеме динамика, последний воспроизводит только низкие частоты, то есть играет роль сабвуфера.

На преодоление индуктивного сопротивления источник расходует часть мощности — это реактивная мощность (Wр). Остальное называют активной или полезной мощностью (Wа) — она производит полезную работу. Вместе реактивная и активная мощности образуют полную: Wр + Wа = Wпол.

График происходящих процессов в катушке индуктивности

Доля активной мощности характеризуется параметром cosϕ: cosϕ = Wа / W пол. Полную мощность принято измерять в вольт-амперах (ВА). Именно эти единицы указываются в характеристике источников бесперебойного питания (ИБП) и дизельных электрогенераторов. Активная мощность измеряется в привычных ваттах (Вт).

Все сказанное имеет отношение к потребителям с электродвигателями и трансформаторами, поскольку обмотки этих элементов по сути, являются катушками индуктивности. То есть если на шильдике импульсного блока питания компьютера указано, что его мощность составляет 400 Вт и cosϕ = 0,7, то от «бесперебойника» данное устройство потянет мощность Wпол = Wа / cosϕ = 400 0,7 = 571,4 ВА.

При большом количестве подобных потребителей, затраты на реактивную мощность существенно перегружают генераторы электростанций, ввиду чего в энергосетях применяют установки компенсации реактивной мощности (УКРМ).

При включении катушки индуктивности в цепь постоянного тока процесс, описанный в пунктах 1-3, также имеет место, только не все время, а в момент включения/отключения.

Если собрать простейшую цепь из последовательно установленных выключателя, катушки и лампы, можно видеть, что лампочка загорается при замыкании цепи с запаздыванием и также с запаздыванием гаснет после размыкания.

Объясняется это тем, что ток в момент включения меняется от нулевого значения до максимума, также в момент отключения его значение меняется, хоть и очень быстро, от максимума до нуля. В первом случае катушка накапливает в себе часть энергии в виде магнитного поля, во втором — отдает ее лампе, отчего та и горит после размыкания цепи.

Принцип работы конденсатора

Подключение прибора к постоянному источнику приводит к тому, что в начальный момент происходит аккумуляция в обкладках из-за электростатической индукции, а сопротивление в этот момент приравнивается нулю. Электрическая индукция провоцирует поле к притяжению разноимённых зарядов на разные обкладки, расположенные друг напротив друга.

Такое свойство получило название ёмкость, которая характерна для всех типов материалов, в том числе и диэлектриков, однако в случае с проводниками она существенно больше. Именно поэтому обкладки изготавливаются из проводника. Увеличение ёмкости способствует накоплению большего количества зарядок на обкладках.

Важно! Когда аккумулируются заряды, происходят ослабление поля и наращивание двухполюсника. Принцип работы

Принцип работы

Происходит это из-за уменьшения места в обкладках, воздействия одноимённых зарядов друг на друга. Одновременно с этим напряжение приравнивается к источнику тока. Прекращение электричества в цепи происходит после того, когда обкладки полностью заполнятся электричеством. Из-за этого пропадает индукция и остаётся только поле, удерживающее и не пропускающее заряды.

Диэлектрик между обкладками

Электротоку будет некуда деться, а на двухполюснике напряжение приравнивается к ЭДС. Когда ЭДС повышается, поле сильнее воздействует на диэлектрик из-за отсутствия места в обкладках. Если внутреннее конденсаторное напряжение будет выше предельных значений, тогда пробьёт диэлектрик.

Конденсатор преобразуется в проводник, и происходит освобождение зарядов, из-за чего электроток начинает идти. Чтобы применять двухполюсник при высоком напряжении повышают размер диэлектрика и наращивают расстояние, имеющееся между обкладками на фоне снижения ёмкости. Диэлектрик располагается между обкладками и не даёт проходить постоянному, выполняя в отношении него барьерную функцию.

Электрическая индукция

Обратите внимание! Именно постоянное напряжение способно формировать электростатическую индукцию, но только в случае замыкания в момент зарядки конденсатора. Благодаря этому механизму сохраняется энергия до момента подсоединения к нему потребителю

Конденсатор в цепи постоянного тока

Чтобы понять, как работает накопитель в цепи постоянного тока, надо добавить в схему лампочку, которая станет загораться только при зарядке, в процессе которой от электротока остаётся напряжение, как бы догоняющее его из-за плавного нарастания. Заряды электричества затрачивают какое-то время для перемещения к обкладкам, именно это и есть время зарядки, продолжительность которого определяется частотой и ёмкостью напряжения. Когда зарядка завершается, лампочка тухнет, и постоянный электроток перестаёт проходить через пассивный электронный компонент.

Конденсатор в цепи переменного тока

Если у источника изменить полярность, то это приведёт к разрядке конденсатора в цепи переменного тока и его повторной зарядке. Формируется постоянная электростатическая индукция при переменном. Всегда при изменении электричеством своего направления запускается механизм зарядки и разрядки, из-за чего он и пропускает переменный. Увеличение частоты приводит к снижению ёмкостного сопротивления двухполюсника.

Конденсатор в постоянной цепи

Напряжение и ток

Цепь, изображенная на рис. 5-17, обладает активным сопротивлением г и индуктивностью L.Примером такой цепи может служить катушка любого электромагнитного прибора или аппарата.

При прохождении переменного тока в цепи будет индуктироваться э. д. с. самоиндукции eL.

Согласно второму правилу Кирхгофа u + eL = ir

откуда напряжение на зажимах цепи

и it — eL = ir L (di/dt)= ua + u

Первая слагающая uа = ir называется активным напряжением,мгновенное значение которого пропорционально току, а вторая uL =— eL L(di/dt) реактивным напряжение м, мгновенное значение которого пропорционально скорости изменения тока.

Если ток изменяется по закону синуса

— Iм sinωt

то активное напряжение

uа = irIмr sinω = Uа м sin ωt

Рис. 5-17, Цепь с активным сопротивлением и индуктивностью.

Оно изменяется также синусоидально, совпадая по фазе с током.

Амплитудное значение активного напряжения

Uа м Iмr,

а действующее значение

Uа = Ir,

Реактивное напряжение

uL L di/dt = ωLIM cos ωt = ULм sin(ωt + π/2)

Оно изменяется синусоидально, опережая по фазе ток на 90°.

Амплитудное значение реактивного напряжения

ULм= ωLIM

а действующее значение

UL= ωLI = xLI

Напряжение на зажимах цепи

и= иa + uL =Uа м sin ωt + ULM sin (ωt + π/2) = UMsin (ωt + φ).

Напряжение на зажимах изменяется синусоидально, опережая ток по фазе на угол φ.

На рис. 5-18 показаны графики; iиa, uLи и, а на рис. 5-19 — векторная диаграмма цепи. На диаграмме векторы напряжений U, Ua и ULобразуют прямоугольный треугольник напряжений, из которого непосредственно следует соотношение, связывающее эти величины:

U=√(U2a + U2L) .

Аналогичная зависимость имеет место и для амплитудных значений

Угол сдвига фаз между напряжением на зажимах

Рис 5-18.Графики тока и напряжения в цепи с активным сопротивлением и индуктивностью.

Рис 5-19. Векторная диаграмма цепи с активным сопротивлением и индуктивностью.

цепи и током в ней находится из треугольника напряжений по одной из формул

cos φ= Ua/U и tgφ=UL/Ua

Чем больше реактивное напряжение по сравнению с активным, тем на больший угол ток отстает по фазе от напряжения на зажимах цепи.

Закон Ома для электрической цепи переменного тока

Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой ω и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения.

Рис. 8

В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:

\(~u = u_R + u_L + u_C\) . (1)

Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:

\(~i = I_m \cdot \cos \omega t\) . (2)

Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на π/2. Поэтому уравнение (1) можно записать так:

\(~u = U_{Rm} \cdot \cos \omega t + U_{Lm} \cdot \cos (\omega t + \frac{\pi}{2}) + U_{Cm} \cdot \cos (\omega t — \frac{\pi}{2})\) , (3)

где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.

Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.

При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im. Колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, поэтому вектор \(~\vec U_{Cm}\) отстает от вектора \(~\vec I_{m}\) на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на π/2, поэтому вектор \(~\vec U_{Lm}\) опережает вектор \(~\vec I_{m}\) на угол 90° (рис. 9).

Рис. 9

На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов \(~\vec U_{Rm}\) , \(~\vec U_{Cm}\) и \(~\vec U_{Lm}\) , вращающихся с одинаковой угловой скоростью ω против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC и uL на отдельных элементах цепи, т. е. сумме проекций векторов \(~\vec U_{Rm}\) , \(~\vec U_{Cm}\) и \(~\vec U_{Lm}\) на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:

\(~\vec U_m = \vec U_{Rm} + \vec U_{Cm} + \vec U_{Lm}\) .

Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна

\(~U_m = \sqrt{U^2_{Rm} + (U_{Lm} — U_{Cm})^2}\) , (4)

или

\(~U_{m} = \sqrt{(I_m R)^2 + (I_m X_L — I_m X_C)^2} = I_m \cdot \sqrt{R^2 + (X_L — X_C)^2} = I_m \cdot \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}\) .

Отсюда

\(~I_m = \frac{U_m}{\sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}}\) . (5)

Введя обозначение для полного сопротивления цепи переменного тока

\(~Z = \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}\) , (6)

выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:

\(~I_m = \frac{U_m}{Z}\) . (7)

Это выражение называют законом Ома для цепи переменного тока.

Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна ω∙t + φ. Поэтому мгновенное значение полного напряжения определяется формулой:

\(~u = U_m \cdot \cos (\omega t + \varphi)\) . (8)

Начальную фазу φ можно найти из векторной диаграммы:

\(~\cos \varphi = \frac{U_{Rm}}{U_m} = \frac{I_m \cdot R}{I_m \cdot \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}} = \frac{R}{Z}\) . (9)

Величина cos φ играет важную роль при вычислении мощности в электрической цепи переменного тока.

Оцените статью:
Оставить комментарий
Adblock
detector