Простейшие бегущие огни всего на одной микросхеме без программирования

Бегущие огни — Практическая электроника

В настоящее время в Рунете море схем с бегущими огнями. В нашей статье рассмотрим самую простую схему, собранную на двух популярных  микросхемах: таймере 555 и счетчике CD4017.

Будем собирать вот по этой схеме (для увеличения кликните по ней):

Схема не очень сложная, как кажется на первый взгляд. Итак, чтобы ее собрать, нам потребуются:

1) три резистора номиналом: 22КилоОма, 500КилоОм и 330 Ом

2) микросхема NE555

3) микросхема CD4017

4) конденсатор на 1 микроФарад

5) 10 советских или китайских светодиодов на 3 Вольта

Таймер 555  —  самая наикрутейшая микруха, разработанная инженерами-проектировщиками.

В настоящее время большинство микросхем производят в так называемом DIP корпусе. DIP — от англ. —  Dual In-line Package, что в дословном переводе означает как «двухрядная сборка». Выводы микросхем в корпусе DIP находятся в противоположных сторонах друг от друга. Расстояние между выводами в основном  2,54 мм, но есть  также и исключения. В зависимости от того, сколько выводов имеет микросхема, так и называется корпус на эту микросхему. Например микросхема 555 имеет 8 выводов, следовательно, ее корпус называется DIP-8.

В красных кружочках я пометил так называемые «ключи». Это специальные метки, с помощью которых можно узнать начало маркировки выводов микросхемы

Первый вывод как раз находится рядом с ключом. Счет идет против часовой стрелки

Значит, на микросхеме NE555N выводы нумеруются таким образом:

Все то же самое касается и микросхемы  CD4017, которая изготовлена в корпусе DIP-16.

Нумерация выводов идет с левого нижнего угла.

Собираем наше устройство. На Макетной плате оно выглядит примерно вот так:

А вот  работа схемы в действии:

Работает вся схема таким образом:  на таймере 555 собран геренаратор прямоугольных импульсов. Частота следования импульсов зависит от резистора R2 и кондера С1.  Далее эти  прямоугольные импульсы считает микросхема счетчика CD4017 и в зависимости от количества прямоугольных импульсов, выдает сигналы на свои выводы. Когда в микросхеме счетчик переполняется, все начинается сначала. Светодиоды моргают по кругу, пока на схеме есть напряжение.

Имейте ввиду, что аналогов микросхем 555 и CD4017 туева куча. Есть даже советские аналоги. Для таймера 555 это КР1006ВИ1, а для микросхемы счетчика К561ИЕ8.

Изготавливаем простые бегущие огни

Светодиоды могут быть расположены свободно и держаться за счет проводов. Но для удобства, лучше изготовить корпус для наших огней. Возьмем кусок пластика, просверлим в нем десять отверстий. Отрежем излишки, оставив тонкую полоску.

Разгибаем усики светодиодов, и вставляем их в отверстия пластика.

Контакты светодиодов находящиеся с одной из сторон припаиваем к перемычке.

Выступающие за перемычку контакты отрезаем.

Далее производим сборку схемы по рисунку.

Подаем напряжение от 5 до 12 Вольт на выводы схемы. Для этого можно использовать блок питания или обычные батарейки и аккумуляторы. Наслаждаемся результатом.

Простейшая схема бегущих огней на 12 вольт

В интернете наиболее часто встречается простая «старомодная» схема с использованием счетчика и генератора (рисунок 1).

Рисунок 1

Работа схемы предельно проста и понятна. Генератор построен на основе таймера импульсов, а счетчик выполняет свою основную функцию – считает импульсы и выдает соответствующие логические уровни на своих выходах. К выходам подключены светодиоды, которые загораются при появлении логической единицы и соответственно гаснут при нуле, создавая тем самым эффект бегущих огней. Скорость переключения зависит от частоты генератора, которая в свою очередь зависит от номиналов резистора R1 и конденсатора С1.

Наименования микросхем приведены советские, но они имеют легкодоступные импортные аналоги. Если необходимо увеличить яркость светодиодов, то для увеличения тока нужно подключать их через буферные транзисторы, т.к. сами выходы счетчика имеют достаточно скромную нагрузочную способность.

Сердце бегущих огней

То, что AVR микроконтроллеры Atmel обладают высокими эксплуатационными характеристиками – всем известный факт. Их многофункциональность и лёгкость программирования позволяет реализовывать самые необыкновенные электронные устройства. Но начинать знакомство с микроконтроллерной техникой лучше со сборки простых схем, в которых порты ввода/вывода имеют одинаковое назначение.

Одной из таких схем являются бегущие огни с выбором программ на ATtiny2313. В данном микроконтроллере есть всё необходимое для реализации подобных проектов. При этом он не перегружен дополнительными функциями, за которые пришлось бы переплачивать. Выпускается ATtiny2313 в корпусе PDIP и SOIC и имеет следующие технические характеристики:

  • 32 8-битных рабочих регистра общего назначения;
  • 120 операций, выполняемых за 1 тактовый цикл;
  • 2 кБ внутрисистемной flash-памяти, выдерживающей 10 тыс. циклов запись/стирание;
  • 128 байт внутрисистемной EEPROM, выдерживающей 100 тыс. циклов запись/стирание;
  • 128 байт встроенной оперативной памяти;
  • 8-битный и 16-битный счётчик/таймер;
  • 4 ШИМ канала;
  • встроенный генератор;
  • универсальный последовательный интерфейс и прочие полезные функции.

Энергетические параметры зависят от модификации:

  • ATtiny2313 – 2,7-5,5В и до 300 мкА в активном режиме на частоте 1 МГц;
  • ATtiny2313А (4313) – 1,8-5,5В и до 190 мкА в активном режиме на частоте 1 МГц.

В ждущем режиме энергопотребление снижается на два порядка и не превышает 1 мкА. Кроме этого данное семейство микроконтроллеров обладает целым рядом специальных свойств. С полным перечнем возможностей ATtiny2313 можно ознакомиться на официальной страничке производителя www.atmel.com.

Схема и принцип её работы

В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1. С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.

Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).

Принципиальная схема стоп-сигнала в виде бегущих огней

Стоп-сигнал служит для предупреждения водителей транспортных средств, которые едут сзади, о том, что водитель тормозит. Дополнительный стоп-сигнал со светодиодами очень важен, так как при интенсивном автомобильном движении порой непонятно, загорается стоп-сигнал или горят габариты

Бегущие огни на светодиодах привлекают дополнительное внимание водителей, сработает эффект рекламы. Тем самым, у задних участников движения будет дополнительное время среагировать на торможение (автор видео — evgenij5431)

Далее рассмотрим, как сделать светодиодный стоп-сигнал своими руками. Ниже детально разбирается схема создания меняющихся огней. Для реализации динамичных огней используются красные светодиодные лампы, которые включены попарно. После включения сначала загораются лампочки в центре, а затем расходятся от центра к краям.

Светодиоды управляются попарно. Сначала загораются светодиодные лампочки HL1 и HL2, далее HL3 и HL4. После того, как гаснет предыдущая пара лампочек, зажигается следующая. Лампочки попарно зажигаются до последней пары HL11 и HL12. Когда загорится и потухнет последняя пара, процесс повторяется.

Светодиодные огни будут бежать до тех пор, пока на вход схемы будет подаваться питание.

Первые светодиоды находятся в середине, остальные располагаются попарно на равном расстоянии к краям. Реально реализован алгоритм бегущего огня от центра стоп-сигнала к его краям. Можно пофантазировать и придумать другой алгоритм, по которому будет мигать каждая лампочка.

Принципиальная схема бегущих светодиодов

Бегущие огни на светодиодах своими руками

В продаже имеется огромное количество различных мигающих цветными огоньками светодиодных девайсов, способных сделать ярче любой праздник. Зачем покупать стандартные светодиодные мигалки, когда намного интереснее за несколько часов своими руками собрать оригинальное и полностью функциональное устройство, способное переключать светодиоды в определенной последовательности, тем самым создавая эффект бегущих огней. Для начинающих радиолюбителей, эта самоделка будет замечательным проектом выходного дня.

На этом рисунке изображена схема бегущих огней на светодиодах.

Схема бегущих светодиодных огней на микросхеме NE555, CD4017, CD4022

Устройство состоит из двух микросхем, принцип работы очень простой. Задающий генератор импульсов выполнен на универсальной микросхеме NE555. Сигнал с генератора поступает на вход двоичного счетчика дешифратора CD4017 или CD4022 эти микросхемы аналогичные и полностью взаимозаменяемые. Микросхема имеет 10 выходов, к которым подключены светодиоды. При подаче тактовых импульсов с генератора импульсов на вход счетчика происходит последовательное переключение между выходами микросхемы.

Светодиоды зажигаются в строгой последовательности от 1 до 10 и поэтому получается эффект бегущих огней. Скорость переключения светодиодов регулируется за счет изменения частоты задающего генератора импульсов подстроечным резистором P1. Напряжение питания светодиодов устанавливается подбором сопротивления резистора R1. Схема питается напряжением от 5 до 15 вольт

Так же обратите внимание на нумерацию светодиодов на схеме. Если вы хотите, чтобы светодиоды зажигались один за другим, то разместите их по порядку указанном на схеме

На этом рисунке изображена печатная плата бегущих светодиодных огней на двух микросхемах.

Печатная плата бегущих светодиодных огней на двух микросхемах своими руками

Детали устройства легко помещаются на печатной плате размером 65х45 мм. Микросхемы для удобства я установил в DIP панельки, стоят копейки, в случае замены микросхемы не надо ничего паять.

Светодиоды с платой соединяются проводами. На каждый канал микросхемы можно подключить не более трех светодиодов. В своей самоделке решил поставить по два светодиода на каждый канал и разместить светодиоды один на против другого таким образом, чтобы получился круговой эффект вращения из двух точек. Вы можете размещать светодиоды в любой последовательности, создавать фигуры, вариантов много, фантазируйте…

Хочу заострить ваше внимание на том, что если будете ставить разноцветные светодиоды. На один канал можно ставить светодиоды, только одного цвета

Все потому, что у разноцветных светодиодов разное сопротивление и поэтому будет светиться только, тот у которого меньшее сопротивление. Конечно можно это дело исправить, если заменить резистор R1 перемычкой, а на каждый светодиод поставить отдельный резистор. Тогда все светодиоды будут светиться, как надо.

Моей задачей было собрать автономное, карманное устройство, которое будет служить световым дополнением к музыкальному «Бумбоксу», поэтому светодиоды и плату с батарейкой, аккуратно разместил в пластиковом корпусе от электромагнитного реле. Светодиоды залил термо клеем. Таким образом приклеил печатную плату. Поставил выключатель и один диод IN4007 для защиты устройства от переполюсовки.

Получилось симпатичное карманное устройство, которое можно взять с собой и наслаждаться бегущими по кругу светодиодными огоньками.

А, что делать если хочется подключить большую нагрузку, например светодиодные ленты? Тогда придется немного усовершенствовать схему. На каждый канал надо поставить транзисторный ключ.

В данной схеме хорошо работают практически любые транзисторы структуры n-p-n например: BD139, TIP41C, MJE13006, MJE13007, MJE13008, MJE13009, КТ815, КТ805, КТ819 и другие аналогичные подберите в зависимости от требуемой нагрузки. Все транзисторы надо закрепить на радиаторе, коллекторы транзисторов по схеме соединяются вместе, поэтому изолировать от радиатора не надо. Резисторы R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 подключите к выходам микросхемы. Питание схемы возьмите от общего источника питания.

Радиодетали для сборки бегущих огней на светодиодах

  • Микросхема NE555
  • Микросхема CD4017 или CD4022
  • Подстроечный резистор P1 на 50К
  • Резистор R1 1К, R2 22К
  • Конденсатор С1 220 мкФ 25В, С2 10 мкФ 25В
  • Светодиоды с напряжением питания от 2 до 12В

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать бегущие огни на светодиодах

Микроконтроллер ATtiny2313 для бегущих огней

Данное устройство относится к серии AVR микроконтроллеров бренда Atmel. Именно под его управлением чаще всего делают бегущую световую ленту, поскольку эксплуатационные характеристики модели достаточно высокие. Микроконтроллеры просты в программировании, многофункциональны и поддерживают реализацию разных электронных устройств.

ATtiny2313 сделан по простой схеме, где порт для вывода и ввода имеет идентичное значение. Выбрать программу (одну из 12) на таком микроконтроллере очень легко, ведь он не перегружен лишними опциями. Модель выпускается в двух корпусах – SOIC и PDIP, причем каждый вариант обладает идентичными характеристиками:

  • 8-битные общие регистры в количестве 32 штук;
  • возможности 120 операций за один тактовый цикл;
  • flash-память внутри системы на 2 кБ с поддержкой 10 тысяч циклов стирания и записи;
  • внутрисистемная EEPROM на 128 байт с поддержкой 100 тысяч циклов;
  • 128 байт встроенной оперативки;
  • 4 ШИМ-канала;
  • счетчик-таймер на 8 и 16 бит;
  • встроенный генератор;
  • удобный для разных целей интерфейс и другие функции.

Микроконтроллер имеет два вида в соответствии с энергопараметрами:

  • классическая модель ATtiny2313 обладает напряжением от 2,7 до 5,5 В и силой тока до 300 мкА на частоте 1 МГц в режиме активности;
  • вариант ATtiny2313А (4313) обладает характеристиками в 1,8-5,5 В и 190 мкА при той же частоте.

В режиме ожидания устройство имеет энергопотребление не больше 1 мкА.

Как уже было указано, память микроконтроллера оснащена 11 комбинациями световых схем, а возможность выбора всех комбинаций светодиодов последовательно – это и есть 12 программа.

Собираем «Бегущие огни» своими руками

Здесь пойдёт речь о том, как сделать бегущие огни на светодиодах своими руками. Схема устройства отличается простотой и реализована на логических микросхемах так называемой жёсткой логики – микросхемах серии ТТЛ. Само устройство включает три микросхемы.

Схема состоит из четырёх основных узлов:

  • генератора прямоугольных импульсов;

  • счётчика;

  • дешифратора;

  • устройства индикации (16-ти светодиодов).

Вот принципиальная схема устройства.

Устройство работает следующим образом. После подачи питания светодиоды HL1 – HL16 начинают последовательно загораться и гаснуть. Визуально это выглядит как движение огонька слева направо (или наоборот). Такой эффект и называется «бегущий огонь».

Генератор прямоугольных импульсов реализован на микросхеме К155ЛА3. Задействовано лишь 3 элемента 2И-НЕ этой микросхемы. С 8-го вывода снимаются прямоугольные импульсы. Частота их следования невелика. Это позволяет реализовать видимое переключение светодиодов.

По сути, генератор на элементах DD1.1 – DD1.3 задаёт темп переключения светодиодов, а, следовательно, и скорость «бегущего огня». При желании скорость переключения можно подкорректировать с помощью изменения номиналов резистора R1 и C1.

Стоит предупредить, что при других номиналах R1 и C1 генерация может быть сорвана – генератор не будет работать. Так, например, генератор отказался работать при сопротивлении резистора R1 равном 1 кОм. Поэтому изменять номиналы C1 и R1 можно лишь в некоторых пределах. Если генератор не запустился, то будет постоянно светиться один из светодиодов HL1 – HL16.

Счётчик на микросхеме DD2 необходим для подсчёта импульсов, поступающих от генератора и подачи двоичного кода на дешифратор К155ИД3. По схеме выводы 1 и 12 микросхемы-счётчика К155ИЕ5 соединены.  При этом микросхема будет считать поступающие на вход C1 (выв. 14) импульсы и выдавать на выходах (1, 2, 4, 8) параллельный двоичный код, соответствующий количеству поступивших импульсов от 0 до 15. То есть на выходах (1, 2, 4, 8) микросхемы К155ИЕ5 последовательно сменяют друг друга 16 комбинаций кода (0000, 0001, 0010, 0011, 0100 и т.д.). Далее в работу включается .

Особенность микросхемы К155ИД3 заключается в том, что она преобразует двоичный четырёхразрядный код в напряжение логического нуля, который появляется на одном из 16 соответствующих выходов (1-11, 13-17). Думаю, такое объяснение не всем понятно. Попробуем разобраться.

Если обратить внимание на изображение микросхемы К155ИД3, то можно заметить, что у неё 16 выходов. Как известно, в двоичном коде из четырёх знаков можно закодировать 16 комбинаций

Больше никак не получится. Напомним, что с помощью четырёхзначного двоичного кода можно закодировать десятичные цифры от 0 до 15 (всего 16 цифр).

Это легко проверить, если возвести 2 (основание системы счисления) в степень 4 (количество разрядов или цифр в коде). Получим 24 = 16 возможных комбинаций. Таким образом, при поступлении на входы микросхемы К155ИД3 двоичного кода в диапазоне от  0000 до 1111 на выходах 0 — 15 появится логический ноль (светодиод засветится). То есть микросхема преобразует число в двоичном коде в логический ноль на выводе, который соответствует числу в двоичном коде. По сути это такой особенный дешифратор из двоичной системы в десятичную.

А почему светится светодиод? На выходе ведь логический ноль. По схеме видно, что аноды всех светодиодов подключены к плюсу питания, а катоды к выходам микросхемы К155ИД3. Если на выходе «0», то для светодиода это как бы минус питания и через его p-n переход течёт ток – светодиод светится. Если на выходе логическая единица  «1», то ток через светодиод не пойдёт.

Если всё то, что было написано вам всё равно не понятно, то не стоит расстраиваться. Просто соберите предложенную схему, например, на беспаечной макетной плате и наслаждайтесь работой устройства. Схема проверена и исправно работает. Вот короткое видео работающего устройства.

Если в распоряжении уже есть стабилизированный блок питания (например, такой как этот), то интегральный стабилизатор DA1 (КР142ЕН5А) и элементы обвязки (C2, C3, C4) в схему устанавливать не надо.

Все номиналы элементов (конденсаторов и резисторов) могут иметь разброс ±20%. На работу устройства это не повлияет. Светодиоды HL1 — HL16 могут быть любого цвета свечения (красного, синего, зелёного) с рабочим напряжением 3 вольта. Можно, например, использовать яркие красные светодиоды диаметром 10 миллиметров. «Бегущий огонь» с такими светодиодами будет смотреться очень эффектно.

Нравится

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

  • Базовые логические элементы и их обозначение на схеме.

  • Как работает JK-триггер?

Обычные светодиоды

Стандартный не мигающий
светодиод дает яркое равномерное освещение и характеризуется малым потреблением
электроэнергии. Наряду с такими качествами, как долговечность, компактность,
энергоэффективность и широкий диапазон температур свечения это делает его вне
конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих
светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде
может быть собрана на базе одной из выше представленных схем. Соответственно
нужно будет приобрести компоненты, описанные выше. Они необходимы для
функционирования того или иного варианта. При этом для сборки потребуется
паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.

Схемы мигалок на их основе

Чтобы происходили
элементарные заданные определенной периодичностью вспышки света, требуется пара
транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор
размещается в центре, а у второго – по середине располагается база. Один или
пара мигающих светодиодов изготавливается по обычной схеме. При этом
частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему
допустимо внедрение одновременно нескольких лед-кристаллов при монтаже
достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются
при соединении их контактов с разноцветными элементами, поочередность вспышек
задается генераторным модулем, а частотность – заданными программными
настройками.

Бегущие огни на светодиодах | Поделки своими руками для авто, дачи и дома

Всех приветствую сегодня рассмотрим простую конструкцию бегущей строки на светодиодах с возможностью регулировки скорости приключений.

Схема.

Схема состоит и задающего генератора на базе задающего таймера NЕ 555,  который включен по схеме низкочастотного генератора прямоугольных импульсов и микросхемы CD 4017 наш аналог К561ИЕ8.

Микросхема CD 4017 из себя представляет десятичный счётчик дешифратор позволяющий переводить двоичный код в электрический сигнал.Она имеет 10 выходов и 1 ход каждый импульс на входе заставляет микросхему последовательно переключать выходы, притом в каждой промежуток времени открыть только один выход.

Нагружая выхода микросхемы светодиодами и подавая последовательность импульсов на вход мы можем наблюдать поочерёдное переключение светодиодов, при том чем выше частота входных импульсов, тем быстрее будут переключаться светодиоды.

На вход можно подавать импульс с любого генератора хоть мультивибратора, в нашем случае импульсы образует микросхема NЕ 555, а путем вращения переменного резистора R1 можно изменять частоту импульсов и скорость переключения светодиодов в целом.

Микросхема имеет 10 выходов, а значит можно подключать 10 светодиодов при том можно использовать даже линейку из двух или трех последовательно соединенных светодиодов.Я немножко не рассчитал диаметр светодиодов и они при вертикальной установки попросту не влезли, поэтому пришлось их слегка подточить, учитывайте это при сборке, либо используйте MSD светодиоды, которые можно припоять со стороны печатной платы.

Печатная плата с первого взгляда может показаться сложной, но это не так, кстати в конце статьи есть ссылка на скачивание платы.

Схема может работать с пятидесятипроцентным разбросом номиналов используемых компонентов

Обратите внимание на токограничивающие резисторы для светодиодов в моем случае их количество равно количеству светодиодов, но можно ограничиться всего одним общим резистором

Микросхемы были установлены на панельки беспаячного монтажа, особого смысла в этом нет,  просто в моем случае иногда приходится повторно использовать компоненты со старых проектов,  а понимаете позволяет быстро извлечь микросхемы без использования паяльника.Диапазон питающих напряжений от пяти до двенадцати вольт,  ток потребления от источника в 9 вольт меньше и десяти миллиампер.Собирайте наслаждайтесь, радуйте и удивляйте близких тем более, что применение данной схемы может быть где угодно, например у меня знакомый на этой основе сделал поворотники в автомобиле, очень красиво смотрятся.

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

Бегущие огни на транзисторах

В основу автомата «бегущий огонь» положен так называемый четырехфазный мультивибратор: он так-же работает в режиме автогенерации но в отличие от простого мультивибратора он имеет несколько транзисторов (в данном случае их четыре но возможно и больше) которые включаются по очереди в циклическом режиме.

Вообще-то, сказать откровенно, такие мультивибраторы не очень устойчивы в работе и это потребовало существенно усложнить схему введением дополнительных элементов.

Давайте рассмотрим схему устройства:

Этот автомат позволяет управлять четырьмя гирляндами ламп, рассчитанных на напряжение 220 В и ток до 0,2 А. Частота переключения гирлянд составляет примерно 0,5 Гц, но ее нетрудно изменить подбором конденсаторов времязадающих цепей для получения обычного режима поочередного переключения гирлянд.

Устройство выполнено на маломощных транзисторах VT1-VT4, которые управляют тринисторами VS1- VS4, а те, в свою очередь,- гирляндами ламп EL1-EL4.

Для повышения устойчивости введены диоды VD5-VD16.Предположим, что после включения автомата в сеть раньше других открылся транзистор VT2. Тогда окажутся закрытыми VT3, VT4, VT1, поскольку их базы через разряженный конденсатор С2, диоды VD16, VD10 и открытый транзистор VT2 будут подключены к общему проводу — плюсу источника питания мультивибратора, а значит, к эмиттерам. Со временем конденсатор С2 зарядится, и ток, протекающий через резистор R9, эмиттерный переход транзистора VT3, откроет этот транзистор. Тогда закроется транзистор VT2 — его база через диод VD11 и открытый транзистор VT3 окажется соединенной с эмиттером. Будут также закрыты транзисторы VT4 и VT1. Вскоре зарядится конденсатор С3 и откроется транзистор VT4. Остальные транзисторы закроются. Так будут поочередно переключаться каскады мультивибратора.

Диоды VD5-VD8 используются как нелинейные элементы со стабильным прямым напряжением (до 0,6 В) на них, обеспечивающим надежное закрывание транзисторов мультивибратора. Часть коллекторного тока открытого транзистора протекает через управляющий электрод соответствующего тринистора и открывает его. А тот включает «свою» гирлянду ламп. Гирлянды питаются от сети через двухполупериодный выпрямитель на диодах VD1-VD4. Для питания же мультивибратора применен простейший параметрический стабилизатор на стабилитроне VD17 и последовательно соединенных балластных резисторах R17, R18. Конденсатор С5 фильтрует стабилизированное напряжение.

В автомате использованы резисторы МЛТ-2 (R17, R18) и МЛТ-0,125 (остальные). Все конденсаторы — К50-6. Диоды VD5-VD8 могут быть любые из серии Д9; VD1-VD4 — любые другие, выдерживающие обратное напряжение не менее 300 В и выпрямленный ток более 0,2 А. Вместо стабилитрона Д814В подойдет Д810 или любой из серии Д818, а вместо тринисторов КУ101Е-КУ103В. Транзисторы могут быть любые из серий КТ361, КТ203, а также МП40-МП42 (в этом варианте базовые резисторы R3, R7, R11, R15 должны быть сопротивлением 2 кОм). Под эти детали и рассчитана печатная плата из одностороннего фольгированного стеклотекстолита. Автомат не требует налаживания, но в случае ненадежного включения той или иной гирлянды может понадобиться подбор соответствующего тринистора.

Схема и принцип её работы

В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1. С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.

Нумерация светодиодов на схеме указана в соответствии с прошивкой.

Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).

Оцените статью:
Оставить комментарий
Adblock
detector