Выпрямительный диод

Известный даже неспециалистам выпрямительный диод – это особый вид приборов на основе полупроводников, используемый с целью получения постоянных напряжений из исходных потенциалов с переменными параметрами. Изделия этого класса относятся к двухэлектродным устройствам с односторонней проводимостью, благодаря которой обеспечивается их выпрямительный эффект (смотрите фото ниже).

Односторонняя проводимость

Односторонняя проводимость

Построенные на основе этих элементов диодные выпрямители широко применяются как в электротехнике, так и в современных электронных изделиях. Чаще всего выпрямительные диоды используются в качестве простых одиночных вентилей или в составе более сложных мостовых схем.

Принцип выпрямления

У любого выпрямительного прибора имеется два вывода или электрода, называемых анодом и катодом. Каждый из них соединен с образующими полупроводниковый переход пластинами соответствующей проводимости (анод – с «p», а катод – с «n» слоем). В моменты, когда на анод диода поступает плюс, а на его катод – минус (в случае так называемого «прямого» включения) прибор пропускает ток, находясь в открытом состоянии.

Если же полярность поступающего напряжения меняет свой знак (обратное включение диода), согласно его вольтамперной характеристике, ток через полупроводниковый переход не протекает. В результате односторонней проводимости прибора на его выходе образуется пульсирующий токовый сигнал (он приведен на фото ниже).

Эффект выпрямления

Эффект выпрямления

Согласно этой схеме после диода VD выпрямленный сигнал Un поступает в нагрузку R (пока без фильтрации), где используется по назначению.

Обратите внимание! Если на вход выпрямительного устройства подать переменное напряжение определенной амплитуды U, ток через него и нагрузку R потечет только в одном направлении.

В результате выпрямления на нагрузке появится серия из положительных полуволн, которые в дальнейшем поступают на электролитические конденсаторы с целью фильтрации. Только после сглаживания пульсаций посредством емкостей можно будет говорить об окончательно выпрямленном напряжении.

Вольтамперная характеристика (ВАХ)

Вольтамперная характеристика рассматриваемого здесь прибора представлена на размещенном ниже рисунке.

Вольтамперная зависимость

Вольтамперная зависимость

Из нее видно, что в первом квадранте осей координат (справа сверху) располагается прямая ветвь зависимости тока Iпр от подаваемого на выпрямитель напряжения Uпр. Своей формой она указывает на низкое сопротивление диода при положительной полярности приложенного к его полюсам потенциала (линейная часть с наклоном, близким к 45 градусам).

В третьем квадранте (слева внизу) располагается обратная ее ветвь, своим горизонтальным положением указывающая на высокое сопротивление p-n перехода.

В этом квадранте напряжение Uобр на полюсах диода имеет отрицательную полярность, вследствие чего ток Iобр через смещенный в обратном направлении переход близок к нулю.

Теория управления p-n переходом

Заложенный в основу любого диодного элемента электронный p-n переход представляет собой двойной слой из насыщенных и обедненных электронами (дырками) областей, которые располагаются одна от другой на удалении порядка размера атома.

Если подать на такой диод напряжение прямой полярности (плюс – на анод, а минус – на катод), электроны из насыщенного ими слоя начинают усиленно диффундировать в область, где их меньше, разгоняясь приложенным положительным потенциалом. В результате этого проводимость слоя резко увеличивается (его сопротивление падает), и ток начинает протекать в прямом направлении. То же самое происходит и с дырками.

В случае, когда к этому же элементу прикладывается напряжение противоположной полярности (потенциалы на аноде и катоде меняются своими знаками), дырки и электроны начинают удаляться от перехода. При этом на его границе образуется потенциальный барьер, не позволяющий носителям зарядов проникать из одной области в другую (смотрите фото ниже).

Потенциальный барьер

Потенциальный барьер

Вследствие этого эффекта переход находится в состоянии пониженной проводимости (высокого сопротивления), при котором диод не проводит ток. С энергетической точки зрения, оба рассмотренных выше случая сводятся к преодолению электронного барьера, искусственно создаваемого на стыке полупроводников двух проводимостей.

Дополнительная информация. В качестве полупроводников используются известные элементы таблицы Менделеева с явно выраженным полуметаллическим эффектом (индий, германий, кремний и другие).

Из этих материалов и формируются описанные выше p-n переходы, которые при изготовлении размещаются в корпусе готового к применению изделия – диода.

Классификация и характеристики диодов

Все известные типы выпрямительных диодов принято различать по следующим признакам:

  • Величина коммутируемой мощности;
  • Частота переключений;
  • Вид используемого при изготовлении p-n перехода полупроводника.

По первому из этих признаков диоды делятся на маломощные приборы, а также на изделия средней и большой мощности. Указанное деление определяется силой тока, которую способен пропускать через себя p-n переход вентильного элемента при фиксированном напряжении на его электродах. В соответствии с этим признаком, рассматриваемые здесь электронные устройства могут быть разбиты на следующие три группы:

  • Диоды низкой мощности с минимальной величиной выпрямленного (или прямого) тока – до 0,3 Ампер;
  • Приборы средней мощности (от 0,3 до 10 Ампер);
  • Мощные или силовые выпрямительные изделия, значения прямых токов в которых достигает величин порядка десятки и сотни ампер.

По своим частотным параметрам все известные типы диодов делятся на приборы низкой, средней, высокой и сверхвысокой (СВЧ) частоты.

Обратите внимание! Большинство выпрямительных диодов, используемых в качестве вентилей в промышленных и бытовых электрических сетях 50 Герц, относятся к разряду низкочастотных.

К этой же категории относят и другие образцы низкочастотных диодных изделий, способных работать на частотах до 20 кГц.

По типу используемого при изготовлении диода перехода их принято делить на уже устаревшие германиевые изделия и современные кремниевые выпрямители. В соответствии с рассмотренной классификацией диодных компонентов, вводятся их характеристики, которые представлены следующими рабочими параметрами:

  • Максимальное выпрямляемое (обратное) напряжение;
  • Прямое напряжение на открытом диодном элементе (его падение на смещенном переходе);
  • Допустимое значение пропускаемого через диод прямого тока;
  • Величина допустимого обратного тока;
  • Предельно рассеиваемая на вентиле мощность;
  • Рабочая и максимальная температуры перехода;
  • Допустимая частота коммутируемого сигнала.

Помимо указанных характеристик, которые считаются основными показателями функционирования диодных элементов, существуют и второстепенные, напрямую связанные с уже рассмотренными ранее параметрами. К ним обычно относят такие характеристики, как быстродействие и емкость p-n перехода, а также его дифференциальное и тепловое сопротивления.

Дополнительная информация. Эти параметры востребованы при проектировании сложных электронных схем, а на работу прибора в выпрямительном режиме, как правило, существенного влияния не оказывают.

Добавим к этому, что температурные режимы работы диодного элемента принято относить к его основным параметрам. Для самого распространенного типа этих изделий (кремниевого диода) этот показатель колеблется обычно в диапазоне от -50 до +130 градусов. При конструировании электронной аппаратуры большое внимание уделяется температуре корпуса самого прибора, величина которой зависит от его параметров (типа, мощности и производителя).

Области применения

Выпрямительные элементы вентильного типа в сфере электротехнических и электронных преобразований применяются, как правило, для следующих целей:

  • Коммутация (размыкание и замыкание рабочих цепей);
  • Детектирование и ограничение сигналов различной формы и длительности;
  • Непосредственное выпрямление переменных напряжений, обеспечивающее получение стабильных уровней потенциалов.

Помимо этого, классический выпрямительный диод, изготовленный на основе кремниевых материалов, является основой для создания так называемых «мостовых» схем, включающих в свой состав сразу несколько элементов (фото ниже).

Мостовая схема

Мостовая схема

С появлением вентильных сборок из четырех диодов, включенных по встречно-параллельному принципу, существенно упростились сами выпрямительные модули с одновременным облегчением технологии их монтажа.

Благодаря таким замечательным характеристикам, как дешевизна, простота конструкции и надежность в эксплуатации выпрямительные диоды на основе полупроводниковых переходов широко применяются не только в электронных и электротехнических устройствах, но и в такой далекой от них области, как радиотехника.

Дополнительная информация. В радиотехнических устройствах эти элементы используются в высокочастотных режимах, обеспечивая выпрямление, коммутацию и ограничение принимаемых эфирных сигналов.

В заключительной части обзора отметим, что современные выпрямительные диоды представлены большим ассортиментом различных типов и моделей, отличающихся как своим конструктивным исполнением, так и заявленными рабочими характеристиками. Умение правильно обращаться с этими электронными элементами сводится к знанию алгоритма выбора того или иного образца диода, ориентируясь на приведенные в справочных пособиях данные.

Видео

Оцените статью:
Оставить комментарий
Adblock detector