Законы электролиза фарадея

Процесс электролиза

Чтобы ясно понять суть законов Фарадея, следует разобраться с процессом, для которого они применяются. Электролизом принято называть разложение соединений в их расплавах или растворах под действием проходящего электрического тока. Поскольку речь идет об электрохимическом процессе, то в его результате происходит два типа реакций: окисление и восстановление. Для их существования необходимо наличие двух электродов: катода и анода.

Два электрода

Если к отрицательной клемме электрической батареи присоединить электрод, то называться он будет катодом. Второй электрод, который подсоединяется к положительному полюсу батареи, — это анод. Оба слова имеют древнегреческие корни:


Catha означает «вниз». Здесь имеется в виду движение электронов в сторону уменьшения свободной энергии системы.
Anas — это «вверх».

Часто школьники и студенты путаются в знаке заряда этих электродов. Чтобы исключить ошибки, существует простой метод запоминания: катионы или положительные ионы вещества всегда движутся к катоду, то есть он является отрицательным электродом. В свою очередь, анионы или отрицательные ионы направляются под действием электрического поля к аниону, поэтому он является положительным.

Имеется еще один способ определения знака электродов. Поскольку на каждом из них проходит один из двух противоположных химических процессов (окисление или восстановление), то этот факт можно использовать таким образом:

«Анод» и «окисление» — оба слова начинаются с гласных букв. Поскольку этот процесс сопровождается отдачей электронов электроду, значит, последний является положительным.
«Катод» и «восстановление» — оба слова начинаются на букву согласную. Так как процесс восстановления сопровождается присоединением к иону электронов, значит, электрод должен их отдать, то есть он является носителем отрицательного заряда.

Окислительно-восстановительные реакции

Именно благодаря им происходит выделение или растворение веществ на электродах. Реакция окисления часто приводит к образованию пузырьков газов на аноде. Процессы же восстановления на катоде сопровождаются присоединением к катионам электронов и образованием твердых веществ из растворов и расплавов. Следует для ясности привести несколько примеров:


Водный раствор поваренной соли (NaCl). Если через него пропускать ток с использованием углеродных электродов, то к аноду (+) будут идти анионы Cl-, на нем они будут окисляться до атомарного хлора, который будет образовывать пузырьки газа ядовитого Cl2. Катионы Na+ будут двигаться и оседать на электроде-катоде (-). Получая от него недостающие электроны для строительства внешней оболочки, будут образовываться в результате реакции восстановления атомы щелочного металла Na.
Водный раствор медного купороса CuSO4. Здесь тип происходящих реакций будет зависеть от материала, из которого изготовлен электрод-анод. Реакция восстановления на катоде будет приводить к выделению меди на нем, однако, на аноде возможны разные варианты. Если этот электрод является платиновым, то на нем происходит выделение кислорода и образование H+ за счет окисления молекул H2O, а не анионов (SO4)2-. Если же анод будет медным, то происходит его собственное окисление и растворение.

Применение в промышленности

Практически все активные химические элементы не содержатся в природе в чистом виде. Ввиду этого применение электролиза является достаточно полезным методом для получения многих металлов и газов:

  • производство чистых алюминия, натрия, калия и магния;
  • получение концентрированных растворов щелочей и кислот;
  • производство водорода, например, с помощью разложения воды;
  • анодирование — покрытие изделий тонкой пленкой различных соединений для их защиты от коррозии.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

Примеры

Расплавы

Активные металлы, менее активные металлы и неактивные металлы в расплавах ведут себя одинаково.

1. Соль активного металла и бескислородной кислоты:

NaCl⟷Na++Cl−{\displaystyle {\ce {NaCl <-> Na+ + Cl-}}}

K(-): Na++e−=Na{\textstyle {\ce {Na+ + e- = Na^0}}}

A(+): Cl−−e−⟶Cl⟶Cl2{\displaystyle {\ce {Cl- — e- -> Cl^0 -> Cl2}}}

2. Соль активного металла и кислородсодержащей кислоты:

Na2SO4⟷2Na++SO42−{\displaystyle {\ce {Na2SO4 <-> 2Na+ + SO4^2-}}}

K(-): 2Na++2e−=2Na{\displaystyle {\ce {2Na+ + 2e- = 2Na^0}}}

A(+): 2SO42−−4e−=2SO3+O2{\displaystyle {\ce {2SO4^2- — 4e- = 2SO3 + O2}}}

3. Гидроксид: активный металл и гидроксид-ион:

NaOH⟷Na++OH−{\displaystyle {\ce {NaOH <-> Na+ + OH-}}}

K(-): Na++e−=Na{\displaystyle {\ce {Na+ + e- = Na^0}}}

A(+): 4OH−−4e−=2H2O+O2{\displaystyle {\ce {4OH- — 4e- = 2H2O + O2}}}

Активные металлы

1. Соль активного металла и бескислородной кислоты

NaCl⟷Na++Cl−{\displaystyle {\ce {NaCl <-> Na+ + Cl-}}}

K(-): 2H2O+2e−=H2+2OH−{\displaystyle {\ce {2H2O + 2e- = H2 + 2OH-}}}

A(+): Cl−−e−⟶Cl⟶Cl2{\displaystyle {\ce {Cl- — e- -> Cl0 -> Cl2}}}

2. Соль активного металла и кислородсодержащей кислоты

Na2SO4⟷2Na++SO42−{\displaystyle {\ce {Na2SO4 <-> 2Na+ + SO4^2-}}}

3. Гидроксид: активный металл и гидроксид-ион

NaOH⟷Na++OH−{\displaystyle {\ce {NaOH <-> Na+ + OH-}}}

Менее активные металлы и неактивные металлы

1. Соль менее активного металла и бескислородной кислоты

ZnCl2⟷Zn2++2Cl−{\displaystyle {\ce {ZnCl2 <-> Zn^2+ + 2Cl-}}}

K(-): Zn2++2e−=Zn{\displaystyle {\ce {Zn^2+ + 2e- = Zn^0}}}

A(+): 2Cl−−2e−=2Cl{\displaystyle {\ce {2Cl- — 2e- = 2Cl^0}}}

2. Соль менее активного металла и кислородсодержащей кислоты

ZnSO4⟷Zn2++SO42−{\displaystyle {\ce {ZnSO4 <-> Zn^2+ + SO4^2-}}}

K(-): Zn2++2e−=Zn{\displaystyle {\ce {Zn^2+ + 2e- = Zn^0}}}

Вывод: 2ZnSO4+2H2O⟶2Zn+2H2SO4+O2{\displaystyle {\ce {2ZnSO4 + 2H2O -> 2Zn + 2H2SO4 + O2}}}

3. Гидроксид: невозможно (нерастворим)

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Магнитный поток

Для практических расчетов, кроме сути явления, нужны соответствующие формулы (правила). Определение магнитного потока (Ф) базируется на векторном выражении индукции (В). Значение этого параметра зависит от площади контрольной площадки (S) и угла наклона силовых линий (α). Зависимости можно выражать следующим образом:

Ф = В * S * cos α.

Если обеспечить прямой угол между поверхностью и вектором индукции, множитель cosα исключается. Для такого расположения с применением стандартов СИ будет формулироваться следующее определение: единица магнитного потока (Вебер, Вб) равна индукции поля 1 Тесла (Тл), которая пронизывает площадку 1 м кв.

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m=k*Q

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t, тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

Bт = 100% * mрасч/mтеор

Ну и напоследок рекомендуем просмотреть подробное объяснение закона Фарадея для электролиза:

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

  • Закон Джоуля-Ленца
  • Зависимость сопротивления проводника от температуры
  • Закон Ома простыми словами

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Электромагнитная индукция

Суть электромагнитной индукции заключается в том, что изменение магнитного поля, покрывающего электрическую цепь, вызывает возникновение электродвижущей силы в этой цепи, которая в случае замкнутой цепи вызывает протекание электрического тока. Если цепь, в которой мы должны генерировать электродвижущую силу, состоит из катушки и прикрепленного к ней амперметра, то источник изменяющегося магнитного поля, который включает в себя катушку, может быть адекватно перемещен постоянным магнитом или движущимся электромагнитом, в котором мы меняем ток питания. В каждом из этих случаев магнитное поле, которое пронизывает катушку, изменяется со временем.

В общем, изменение магнитного потока в цепи амперметра вызывает электрический ток в этой цепи.

Источником индуктивных явлений снова является сила Лоренца F, которая возникает, когда заряд q движется со скоростью v в магнитном поле B

F = q * v * B

Когда направляющая перемещается в поле B, подвижные носители нагрузки будут смещаться под действием силы Лоренца до тех пор, пока в проводнике не появится электрическое поле E, а сила, действующая на носители, F = q * E, уравнивает силу Лоренца. Когда линейный проводник длины l движется с постоянной скоростью v в однородном магнитном поле B, направленном перпендикулярно оси проводника и вектору скорости v , как на чертеже:

тогда мы сохраним условие баланса между силой Лоренца и силой отталкивания между зарядами в виде уравнения:

q*v*B = q*E ,

следовательно

v*B = E = V / l ,

где V — разность потенциалов на концах проводника длиной l. Следовательно, значение этой разности потенциалов:

Если вектор v не перпендикулярен полю B , но образует с ним угол N , то разность потенциалов на концах направляющей будет:

V = v * B * l * sin θ

Это означает, что перемещение проводника вдоль направления поля B не будет генерировать в нем электродвижущую силу. Нетрудно доказать, что в случае направляющей любой формы разность потенциалов между точками а и b направляющей равна:

Когда прямоугольная рамка со сторонами a и b вращается в однородном магнитном поле B с постоянной угловой скоростью T

это электродвижущая сила V, генерируемая с обеих сторон рамы:

Магнитные силы, действующие в двух других сторонах петли, перпендикулярны этим сторонам и не влияют на электродвижущую силу. Посредством соответствующего способа получения генерируемого напряжения можно реализовать простейшие модели генераторов переменного тока (а) и постоянного тока (b), как показано на рисунке:

В природе и технике существует огромное количество явлений, вызванных электромагнитной индукцией, то есть генерацией электродвижущей силы в пространстве, где существует изменяющееся магнитное поле. Все эти явления описываются одним замечательным, компактным уравнением, являющимся содержанием закона Фарадея.

Законы электролиза Фарадея

Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

Первый закон

Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

Второй закон

Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

Пример 1: пространственно меняющееся магнитное поле

Рис. 3. Замкнутый прямоугольный провод движется вдоль оси x со скоростью v в магнитном поле, которое изменяется вдоль x.

Рассмотрим случай на рисунке 3, на котором прямоугольная замкнутая проволочная петля, расположенная в плоскости xy, перемещается в направлении оси x со скоростью v. Центр петли xC удовлетворяет условию v = dxC / dt. Петля имеет длину ℓ в направлении оси y и ширину w в направлении оси x. Зависящее от времени пространственно меняющееся магнитное поле B(x) показано в направлении z. Магнитное поле на левой стороне равно B(xC − w / 2), а на правой стороне B(xC + w / 2). Электродвижущую силу можно найти либо с помощью закона Лоренца, либо, что эквивалентно, используя вышеизложенный закон индукции Фарадея.

Закон Лоренца

Заряд q в проводнике на левой стороне петли испытывает силу Лоренца q v × B k = −q v B(xC − w / 2) j   (j, k — единичные векторы в направлениях y и z; см. векторное произведение векторов), что вызывает ЭДС (работу на единицу заряда) v ℓ B(xC − w / 2) по всей длине левой стороны петли. На правой стороне петля аналогичное рассуждение показывает, что ЭДС равна v ℓ B(xC + w / 2). Две противоположные друг другу ЭДС толкают положительный заряд по направлению к нижней части петли. В случае, когда поле B возрастает вдоль х, сила на правой стороне будет больше, а ток будет течь по часовой стрелке. Используя правило правой руки, мы получаем, что поле B, создаваемое током, противоположно приложенному полю. ЭДС, вызывающая ток, должна увеличиваться по направлению против часовой стрелки (в отличие от тока). Складывая ЭДС в направлении против часовой стрелки вдоль петли мы находим:

E=vℓB(xC+w2)−B(xC−w2) .{\displaystyle {\mathcal {E}}=v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ .}

Закон Фарадея

В любой точке петли магнитный поток через неё равен:

ΦB=±∫ℓdy∫xC−w2xC+w2B(x)dx{\displaystyle \Phi _{B}=\pm \int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x)dx}
=±ℓ∫xC−w2xC+w2B(x)dx .{\displaystyle \qquad =\pm \ell \int _{x_{C}-w/2}^{x_{C}+w/2}B(x)dx\ .}

Выбор знака определяется по принципу, имеет ли нормаль к поверхности в данной точке то же направление, что и B, или противоположное. Если нормаль к поверхности имеет то же направление, что и поле B наведённого тока, этот знак отрицательный. Производная по времени от потока (найденная с помощью методов дифференцирования сложной функции или по правилу Лейбница дифференцирования интеграла) равна:

dΦBdt=(−)ddxC∫ℓdy ∫xC−w2xC+w2dxB(x)dxCdt {\displaystyle {\frac {d\Phi _{B}}{dt}}=(-){\frac {d}{dx_{C}}}\left[\int _{0}^{\ell }dy\ \int _{x_{C}-w/2}^{x_{C}+w/2}dxB(x)\right]{\frac {dx_{C}}{dt}}\ }
=(−)vℓB(xC+w2)−B(xC−w2) ,{\displaystyle \qquad =(-)v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ ,}

(где v = dxC / dt является скоростью движения петли в направлении оси х), что приводит к:

E=−dΦBdt=vℓB(xC+w2)−B(xC−w2) ,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ ,}

как и в предыдущем случае.

Эквивалентность этих двух подходов является общеизвестной, и в зависимости от решаемой задачи более практичным может оказаться либо тот, либо другой метод.

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом иона называется отношение молярной массы A{\displaystyle A}иона к его валентности z{\displaystyle z}. Поэтому электрохимический эквивалент

k = 1F⋅Az{\displaystyle k\ =\ {1 \over F}\cdot {A \over z}},

где F{\displaystyle F} — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

m=M⋅I⋅Δtn⋅F{\displaystyle m={\frac {M{\cdot }I{\cdot }{\Delta }t}{n{\cdot }F}}},
где M{\displaystyle M} — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль
I{\displaystyle I} — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А
Δt{\displaystyle {\Delta }t} — время, в течение которого проводился электролиз, с
F{\displaystyle F} — постоянная Фарадея, Кл·моль−1
n{\displaystyle n} — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного)
Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Устройство и принцип работы

Самая простейшая электролизная установка состоит из нескольких «ячеек», каждая из которых включает в себя:

  • 2 пластинчатых электрода – катод (отрицательный) и анод (положительный);
  • Резиновую прокладку, располагающуюся по периметру двух смежных разноименных электродов.

Крайние ячейки оснащаются специальными патрубками, через которые отводятся выделяющиеся газы.

Несколько соединенных между собой «ячеек» электролизной установки

Электролизер может содержать от 1 до 30-40 и более таких «ячеек», одноименные пластины которых подключены последовательно.

Важно! При использовании источников питания с переменным током дополнительно применяют выпрямители, самым простейшим из которых является диодный мост. Работает такая установка следующим образом:

Работает такая установка следующим образом:

  • В пространство между электродами заливают дистиллированную воду с растворенной в ней щелочью или обычной пищевой содой;
  • От источника питания на электроды всех ячеек установки подается напряжение номиналом 1,8-2,0 В;
  • В результате протекания процесса электролиза к отрицательно заряженному катоду притягиваются анионы (положительно заряженные ионы) растворенного в воде вещества, в результате чего на нем образуется тонкая пленка натрия;
  • На положительно заряженном аноде происходит разрушение молекул воды, при этом из каждой образуется 2 атома водорода и 1 атом кислорода;
  • Выделяющийся гремучий газ по отводным патрубкам попадает в предназначенную для него емкость.

Интенсивность процесса электролиза зависит от величины напряжения и силы тока – при малых значениях данных характеристик процесс протекать не будет. Если источник питания будет подавать ток со слишком большими значениями вольт-амперной характеристики, заливаемый в электролизер раствор будет сильно нагреваться и выкипать.

Первый закон Фарадея

Основная статья: Законы электролиза Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

m=k⋅q=k⋅I⋅t{\displaystyle m=k\cdot q=k\cdot I\cdot t},если через электролит пропускается в течение времени t постоянный ток с силой тока I.

Коэффициент пропорциональности k{\displaystyle k} называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

m=miNi{\displaystyle m=m_{i}N_{i}} (1)
mi=MNa{\displaystyle m_{i}=M/N_{a}} (2)
Ni=Δqqi{\displaystyle N_{i}={\frac {\Delta q}{q_{i}}}} (3)
Δq=IΔt{\displaystyle \Delta q=I\Delta t} (4)
qi=ez{\displaystyle q_{i}=ez}, (5)
где z — валентность атома (иона) вещества,
e — заряд электрона
Подставляя (2)-(5) в (1), получим
m=μzeNAIΔt{\displaystyle m={\frac {\mu }{zeN_{A}}}I\Delta t}
m=μzFIΔt{\displaystyle m={\frac {\mu }{zF}}I\Delta t},

где F=eNA{\displaystyle F=eN_{A}} — постоянная Фарадея.

k=μFz{\displaystyle k={\frac {\mu }{Fz}}}
m=kIΔt{\displaystyle m=kI\Delta t}

Математический вид

Законы Фарадея можно записать в виде следующей формулы:

m = (QF)(Mz),{\displaystyle m\ =\ \left({Q \over F}\right)\left({M \over z}\right),}

где:

  • m{\displaystyle m} — масса осаждённого на электроде вещества,
  • Q{\displaystyle Q} — полный электрический заряд, прошедший через вещество
  • F=96485,33(83){\displaystyle F=96\,485,33(83)} Кл·моль−1 — постоянная Фарадея,
  • M{\displaystyle M}— атомная масса иона (Например, атомная масса иона меди Cu+{\displaystyle {\ce {Cu+}}} = 63,5 г/моль),
  • z{\displaystyle z} — валентное число ионов вещества (число электронов на один ион).

Заметим, что Mz{\displaystyle M/z} — это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M,F{\displaystyle M,\,F} и z{\displaystyle z} являются константами, так что, чем больше величина Q{\displaystyle Q}, тем больше будет величина m{\displaystyle m}.

Для второго закона Фарадея Q,F{\displaystyle Q,\,F} и z{\displaystyle z} являются константами, так что чем больше величина Mz{\displaystyle M/z} (эквивалентная масса), тем больше будет величина m{\displaystyle m}.

В простейшем случае используется постоянный ток и полный электрический заряд (прошедший через систему) за время электролиза равен: Q=It{\displaystyle Q=It} , что приводит к выражению:

m = (ItF)(Mz),{\displaystyle m\ =\ \left({It \over F}\right)\left({M \over z}\right),} где размерность тока I{\displaystyle I} ампер-час (ампер-секунда и др.) определяет размерность времени электролиза t{\displaystyle t}.

и тогда

n = (ItF)(1z),{\displaystyle n\ =\ \left({It \over F}\right)\left({1 \over z}\right),}

где:

  • n{\displaystyle n} — выделенное количество вещества («количество молей»): n=mM{\displaystyle n=m/M},
  • t{\displaystyle t} — время действия постоянного тока.

В более сложном случае переменного электрического тока полный заряд Q{\displaystyle Q} тока I(τ){\displaystyle I(\tau )} суммируется за время τ{\displaystyle \tau }:

Q=∫tI(τ) dτ.{\displaystyle Q=\int _{0}^{t}I(\tau )\ d\tau .}

Здесь t{\displaystyle t} — полное время электролиза, τ{\displaystyle \tau } переменная времени, ток I{\displaystyle I} является функцией от времени τ{\displaystyle \tau }.

Оцените статью:
Оставить комментарий