Особенности применения основных видов силовых диодов

Высокочастотный диод

Структурные схемы плоскостного ( а и точечного ( б диодов.

Высокочастотные диоды предназначены для использования в качестве ключевых элементов в импульсных схемах. Для диода состояние включено соответствует прямому смещению р-и-перехода, состояние выключено — обратному. Чем меньше их диффузионная емкость, тем быстрее протекают переходные процессы в диоде, тем меньше время переключения т, тем больше быстродействие. Для уменьшения диффузионной емкости диода необходимо уменьшить время жизни неравновесных носителей, что достигается увеличением удельной проводимости базы диода.

Высокочастотные диоды характеризуются теми же параметрами номинальных и предельных режимов работы, что и выпрямительные диоды. Кроме того, высокочастотные диоды часто характеризуются дифференциальным ( внутренним) сопротивлением и коэффициентом шума. Шумовые свойства диода можно характеризовать величиной эквивалентного омического сопротивления R3KB, мощность тепловых шумов которого равна мощности шума диода.

Структурные схемы плоскостного ( а и точечного ( б диодов.

Высокочастотные диоды предназначены для использования в качестве ключевых элементов в импульсных схемах. Для диода состояние включено соответствует прямому смещению / ьл-перехода, состояние выключено — обратному. Чем меньше их диффузионная емкость, тем быстрее протекают переходные процессы в диоде, тем меньше время переключения т, тем больше быстродействие. Для уменьшения диффузионной емкости диода необходимо уменьшить время жизни неравновесных носителей, что достигается увеличением удельной проводимости базы диода.

Высокочастотные диоды предназначены для работы в различных схемах преобразования элекрических сигналов в диапазоне частот до нескольких сотен мегагерц. Точечные диоды отличаются от плоскостных более сложными процессами, протекающими в них при выпрямлении. В большинстве случаев основой точечных диодов служиг кристалл германия, в который упирается тонкая металлическая игла. Точечный контакт получают путем специальной формовки. Через диод пропускается несколько сравнительно мощных, но-коротких импульсов прямого тока. При этом возникает сильный местный нагрев контакта и происходит сплавление кончика иглы с полупроводником. Процесс формовки сопровождается изменением типа электропроводности части исходного полупроводника, которая примыкает к контакту. В месте контакта иглы и полупроводниковой пластины возникает р-л-переход.

Высокочастотные диоды предназначены для выпрямления и детектирования сигналов в диапазоне частот до 600 Мгц. Они изготавливаются, как правило, из германия или кремния и имеют точечную структуру.

Вольт-амперная характеристика ( а и внешний вид ( б диода.

Высокочастотные диоды применяются для детектирования ( выпрямления токов высокой частоты), модуляции, преобразования частоты, а также в маломощных измерительных схемах.

Высокочастотные диоды применяют для детектирования ( выпрямления токов высокой частоты), модуляции, преобразования частоты, а также в маломощных измерительных схемах.

Высокочастотные диоды являются приборами универсального назначения. Они могут быть использованы для выпрямления токов в широком диапазоне частот ( до сотен МГц), детектирования, модуляции и других нелинейных преобразований электрических сигналов. Свойства высокочастотных диодов характеризуют следующие параметры.

Высокочастотные диоды могут работать в различных схемах преобразования электрических сигналов вплоть до частот порядка нескольких сотен мегагерц. В этой группе диодов в большинстве случаев используется точечный переход. Полупроводниковый диод с точечным переходом обычно называется точечным диодом.

Высокочастотные диоды являются универсальными приборами. Они могут работать в выпрямителях переменного тока широкого диапазона частот ( до нескольких сотен мегагерц и даже до десятков гигагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов.

Германиевые точечные высокочастотные диоды могут иметь обратное напряжение до 350 В и прямой ток до 100 мА при Unp 1 — 2 В. Барьерная емкость точечных германиевых диодов мала ( около 1 пФ), но при СВЧ они применяться не могут из-за эффекта накопления. При частоте выше 150 МГц инжектированные носители заряда за время действия обратного напряжения не успевают ре-комбинировать и уйти из базы.

Высокочастотные диоды ранних разработок содержат точечный р-л-переход ( § 1.3), в связи с чем до настоящего времени за ними сохранилось название точечные.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

Как классифицируются

Справочник по выпрямительным диодам может быть составлен по ряду критериев. Если отталкиваться от наибольшей величины прямого электротока, можно выделить категории деталей с малым значением мощности (предназначены для работы с током до 300 миллиампер), средним (от 300 мА до 10 А) и выпрямительные диоды большой мощности (более 10 А). Мощные диоды с кремниевыми компонентами обладают значительно меньшим значением обратного тока, по сравнению с деталями из германия. Это позволяет добиться больших значений возможного обратного напряжения в полупроводниковых элементах, превышающего 1,5 киловольт (у германиевых изделий оно довольно малое – не более 400 вольт).

Важно! Диоды с кремнием отличаются также значительно лучшей переносимостью высоких температур, сохраняя работоспособность при показателях до 150 градусов Цельсия (для германия максимум составляет 80 градусов). Наименьшая температура эксплуатации для обоих типов изделий – -60 градусов

По особенностям функционирования можно выделить следующие типы диодных устройств:

  1. Импульсные – используются в маломощных электросхемах с соответствующей подачей напряжения. Основными их характеристиками являются наибольший электроток восстановления (это обратный ток, протекающий по устройству следом за переключением), время восстановления (по его прошествии происходит переход в режим обратного напряжения) и время установки (в этот период прямой электроток течет по диоду до того, как установится нужное напряжение).
  2. Обращенные – отличаются тем, что прямое включение показывает значительно большие резистивные свойства, чем обратное. Применяют их с целью выпрямить сигналы с малой амплитудой (менее 100 вольт).
  3. Изделия Шоттки – отличаются малым показателем инерционности. Особенность их устройства такова, что внутри диода не происходит накопления и рассасывания неосновных носителей. Поскольку их полупроводниковый слой имеет небольшую величину сопротивления, при последовательном подключении деталь обладает низкой резистивностью. Варикапы Шоттки хорошо подходят для использования на источниках питания импульсного типа, реализующих выпрямление напряжения с частотой более одного мегагерца. Они могут работать с электротоками большой силы – более 10 ампер.

Диодные компоненты Шоттки

Описание выпрямительных диодов

Выпрямительный электрический диод высокой и средней мощности (СВЧ) – это устройство, которое позволяет электрическому току двигаться только в одном направлении, в основном он используется для работы определенного источника питания. Выпрямительные диоды могут перерабатывать более высокий ток, чем обычные проводники. Как правило, они применяются для преобразования переменного тока в постоянный, частота которого не превышает 20 кгц. Схема их работы имеет следующий вид:

Фото — Принцип работы выпрямительного диода

Многие электрические приборы нуждаются в данных дискретных компонентах из-за того, что они могут выступать в роли интегральных схем. Чаще всего выпрямительные мощные диоды изготавливают из кремния, благодаря чему их поверхность PN-перехода довольно велика. Такой подход обеспечивает отличную передачу тока, при этом гарантируя отсутствие замыканий или перепадов.

Фото — Выпрямительные диодыВыпрямительные диоды

Кремниевые полупроводниковые выпрямители, ламповые термоэлектронные диоды изготавливаются при использовании таких соединений, как оксид меди или селена. С введением полупроводниковой электроники, выпрямители типа вакуумных трубок с металлической основой устарели, но до сих пор их аналоги используются в аудио и теле-аппаратуре. Сейчас для питания аппаратов от очень низкого до очень высокого тока в основном используются полупроводниковые диоды различных типов (быстродействующие блоки, иностранные германиевые приборы, отечественные устройства таблеточного исполнения, диоды Шоттки и т.д.).

Другие устройства, которые оснащены управляющими электродами, где требуется более простой способ ректификации или переменное выходное напряжение (как пример, для сварочных аппаратов) используют более мощные выпрямители. Это могут кремниевые или германиевые приборы. Это тиристоры, стабилитроны или другие контролируемые коммутационные твердотельные переключатели, которые функционируют как диоды, пропуская ток только в одном направлении. Их использует промышленная электроника, также они широко применяются для инженерной электротехники, сварки или контроля работы линий передач тока.

Фото — Выпрямительный диод и катод с анодом

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Особенности диодов

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-». Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультиметром.

Различные виды диодов.

На сегодняшний день в радиоэлектронике существует несколько видов диодов: Виды диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Будет интересно Способы проверки транзисторов на работоспособность

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Таблица замеров характеристик диодов с помощью мультимера.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Что такое мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

Будет интересно Как сделать регулятор мощности на симисторе своими руками

С помощью этого прибора даже можно определить пригодность батарейки.

Проверка светодиодов в лампе.

Как проверить диод

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?». Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев. Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Систематизация диодов

Классификация проводится по назначению, физическим и электрическим, характеристикам, материалу изготовления, конструктивным и технологическим параметрам и прочее.

По мощностным показателям они бывают:

  • Маломощными – до 300 mA;
  • Среднемощными – диапазон 300 mA-10 А;
  • Большой мощности – свыше 10 А.

Варикапы могут быть произведены из кремния или германия. Самыми часто встречаемыми являются кремневые элементы, поскольку обладают более высокими техническими параметрами. При тех же показателях напряжения они располагают гораздо меньшими обратными токами, поэтому величина потенциального обратного напряжения может регистрировать 1500В, в то время как у германиевых моделей только от 100В до 400В.

Также они отличаются и эксплуатационными характеристиками при различных температурных показателях: кремниевые выдерживают нагрузку в диапазоне от -60 до + 150 Со, а германиевые от -60 до +85 Со (при максимальной температуре формируются электронно-дырочные пары, которые способствуют росту обратного тока, делая действие диода малоэффективным).

Тиристоры

Данные детали находят широкое применение в приборах для выпрямления и преобразования электротока, сварочных аппаратах, устройствах запуска и контроля скорости работающего на электричестве транспорта, различных радиоэлектронных и коммутационных установках. Применяются они и в конструкциях, предназначенных для компенсации реактивной мощностной нагрузки.

Важно! Низкочастотные тиристоры рассчитаны на эксплуатацию при частоте не более 100 герц. Устройства, отличающиеся повышенным быстродействием, заточены под использование в установках, требующих быстрого нарастания открытого электротока и закрытого напряжения

Тиристорная деталь

Буквенно-цифровая кодификация

Отечественные полупроводники обладают специальной кодировкой из комбинации букв и цифр, посредством которых специалист быстро может выбрать то, что ему необходимо.

  • Первый знак – Г (или 1) германий, К (или 2) кремний, А (или 3) галлий, И (или 4) индий;
  • Второй знак – Д выпрямительные или импульсные термо- или магнитные, Ц выпрямительные столбы, В варикапы, И туннельные, А сверхвысокочастотные, С стабилизаторы, Л оптоэлектронные устройства, О оптопары, Н тиристоры;
  • Третий знак – параметры, направление или принцип работы пробора;
  • Четвертый знак – порядковый номер технологической группы;
  • Пятый знак – классифицирование диодов, которые были произведены по одной технологии.

Кроме того, изготовитель может дополнительно вносить в код и другие знаки.

Для зарубежных полупроводников предусмотрен стандарт EIA/JEDEC, обозначение которым можно расшифровать следующим образом:

  • Первый знак – материал изготовления: А германий, В кремний;
  • Второй знак – подкласс приборов: А сверхвысокочастотные, В варикапы, Х умножители напряжения, Y выпрямители, Z стабилитроны.
Оцените статью:
Оставить комментарий