Трансформаторы напряжения нтми 6-10кв

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

рис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Обозначение трансформатора напряжения на схеме

Предохранители  трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Схемы подключения трансформаторов СН

При выборе схем электрических соединений собственных нужд подстанций предусматриваются меры, повышающие их надежность: установка на подстанции не менее двух трансформаторов собственных нужд (обычно не больше 560 или 630 кВ·А), секционирование шин собственных нужд. Применение автоматического ввода резерва (АВР) на секционном выключателе, резервирование со стороны высшего напряжения (с. н.) и др.

Схемы присоединения собственных нужд при наличии на подстанциях: а – переменного и выпрямленного оперативного тока, б – постоянного оперативного тока

На рис. 1. показаны схемы собственных нужд подстанций, применяемые в зависимости от вида оперативного тока. Оперативный ток используется для питания цепей сигнализации, защиты, управления и автоматики. Применяют три вида оперативного тока: переменный — на под­станциях с упрощенными схемами, выпрямленный и постоянный — на станциях и подстанциях, имеющих стационарные аккумуляторные установки.

При переменном и выпрямленном токе рекомендуется схема (рис. 1, а), согласно которой предусматривается непосредственное подключение трансформаторов собственных нужд к обмоткам низшего напряжения главных трансформаторов (автотрансформаторов).

Такое подключение обеспечивает питание сети оперативного тока и производство операций выключателями при отключении шин 6–10 кВ. При постоянном оперативном токе наибольшее распространение имеет схема, показанная на рис. 1, б, когда трансформаторы с. н. непосредственно подключаются к шинам 6– 10 кВ.

Рис. 2. Упрощенная схема собственных нужд подстанции 220 кВ

На подстанциях 110 кВ и мощных подстанциях 35 кВ нормально устанавливают два трансформатора собственных нужд, присоединяя их к шинам вторичного напряжения 6–10 кВ подстанции.

Рис. 3. Схема подключения ТСН через один разъединитель

На рисунке 3 показано присоединение рабочего (резервного) трансформаторов собственных нужд, из которых один нормально находится в работе.

Мощность, потребляемая на собственные нужды подстанций, обычно не превышает 50 – 200 кВт. Наиболее ответственными механизмами собственных нужд подстанций на переменном токе являются вентиляторы искусственного охлаждения мощных трансформаторов. Все остальные ответственные потребители собственных нужд подстанции постоянно питаются от аккумуляторных батарей или резервируются от них. На подстанциях с установленными электромагнитными приводами на стороне высшего напряжения и при отсутствии аккумуляторной батареи устанавливается трансформатор на питающей линии (рис.4).

Рис. 4. Подстанция с одним трансформатором СН.

На сравнительно небольших понижающих подстанциях 35 кВ с вторичным напряжением 6 – 10 кВ для питания собственных нужд устанавливают, один трансформатор с вторичным напряжением 380/220. В случае необходимости резервирование питания может осуществляться от ближайшей городской или заводской сети, с напряжением которой и должно быть согласовано вторичное напряжение трансформатора собственных нужд.

— Что надо сделать, прежде чем принять решение о замене существующего трансформатора на более мощный?

— Прежде, чем приступить к замене трансформатора, надо определить, какая мощность каждого садового домика на участке в товариществе (желательно не больше 15 киловатт на каждый садовый домик). Если у вас нет документов на ваше энергохозяйство, то можно обратиться в любую организацию, которая занимается проектированием электроустановок. Ее специалисты по строительным нормам и правилам освежат вам данные по вашей электрике. Дальше все данные по участкам собирают воедино и определяют общую мощность энергопотребления юридического лица — СНТ. Потом вы смотрите на мощность своего трансформатора и, за вычетом подсчитанной нагрузки, определяете, каков у него запас (опять-таки желательно из расчета 15 киловатт на каждого или меньше, если решит общее собрание).

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением. 

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.  

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую. 

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит»  Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

  • по функциональности: на измерительные и защитные;

  • по току: постоянного и переменного тока;

  • по коэффициенту трансформации: одно и многодиапазонные;

  • по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;

  • по напряжению: низкого и среднего;

  • по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20 


Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник. 

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника. 

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока. 

Дополнительные функции подстанции

Подстанция также может иметь и дополнительные возможности, к которым относят:

Передача и распределение электричества. Мощность что передается под высоким напряжением должна быть понижена с целью разветвления.
Переключение и выделение для обслуживания схем

Переключение считается достаточно важной функцией подстанции. Подстанция способна самостоятельно выполнить закрытие фидера

Это позволяет обеспечить значительную безопасность. Переключение напряжения считается опасной работой и для этого используют специальные переключатели, которые автоматически выполнят эту работу.
Отключение нагрузки. Если спрос на напряжение считается большим, тогда подстанции автоматически могут сбросить нагрузку и нормализовать подачу электроэнергии.
Коррекция коэффициента мощности цепи. Коэффициент мощности обязательно должен находиться на допустимом значении.
Теперь безопасность подстанции будет высокой. Это стало возможным благодаря использованию новых технологий безопасности.

Трансформатор — собственная нужда

От трансформатора собственных нужд получают питание комплектное устройство питания привода масляного выключателя и шкаф управления типа ШГС-9007. В шкафу размещена вся релейно-контакторная аппаратура, выполняющая логические функции по управлению погружным двигателем и его защите. Выходные элементы шкафа ШГС-9007 включены в цепи катушек электромагнита отключения масляного выключателя и контактора, управляющего электромагнитом включения масляного выключателя.

Применение трансформаторов собственных нужд с расщепленными обмотками и секционирование шин позволяет обойтись для указанных агрегатов выключателями существующих в настоящее время параметров.

Схема собственных нужд с питанием нагрузки от трех секций. / — повысительный трансформатор. 2 — трансформатор собственных нужд. 3-пусковой трансформатор. 4-генератор. — нормально отключен. — нормально включен.| Схема собственных нужд с трехобмоточными трансформаторами. 1 -повысктельный трансформатор. 2-трансформатор собственных нужд. 3 — пусковой трансформатор. 4 — генератор. — нормально отключен. — нормально включен.

Мощность трансформаторов собственных нужд зависит от мощности турбогенератора, вида сжигаемого топлива, системы циркуляционного водоснабжения, параметров пара и типа привода питательных насосов.

Общий вид ( а и принципиальная электрическая схема ( б КТППН-630ХЛ1.

От трансформатора собственных нужд подается питание на станции управления подогревом, комплектное устройство питания привода масляного выключателя, цепи наружного и внутреннего освещения.

Мощность трансформаторов собственных нужд ограничивается допустимым уровнем токов к.

Шкафы трансформаторов собственных нужд предусматривают возможность подсоединения трансформаторов собственных нужд к сборным шинам или непосредственно к выводам шкафа ввода через проходные изоляторы наружной установки.

Присоединение трансформаторов собственных нужд к питающей сети зависит от системы оперативного тока, применяемой на ПС.

Повреждение трансформатора собственных нужд также вызывает перерыв в работе блока на время, необходимое для отсоединения поврежденного трансформатора и восстановления работы системы собственных нужд через резервный трансформатор.

Минимально допускаемые расстояния для ЗРУ.

Два трансформатора собственных нужд применяются для всех мощных подстанций с напряжением 110 кв и выше и для подстанций 35 кв в случае использования их, как источника питания сети переменного тока. Трансформаторы собственных нужд присоединяются или к сборным шинам низшего напряжения подстанции или к ответвлениям цепи основных трансформаторов.

Соединение обмоток.

Для трансформаторов собственных нужд подстанций при мощностях до 100 ква включительно ГОСТ допускает расположение ответвлений на доске зажимов внутри бака трансформатора; переключение ответвлений при этом производится при снятой крышке бака. В настоящее время трансформаторы с досками зажимов выпускаются очень редко, однако они еще применяются на подстанциях и в некоторых предприятиях, поэтому остановимся на описании их.

V — трансформатор собственных нужд; w — электрический щит; х — химлабораторпя п вспомогательные помещении; у — монтажный проем.

Параметры трансформаторов тока

Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.

Коэффициент трансформации

Коэффициент трансформации ТТ определяет номинал измерения тока и означает, при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока к номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда ТТ могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединение (например, такое решение применяется в трансформаторах тока ТФЗМ-110) либо наличием отводов на первичной или вторичной обмотках (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).

Класс точности

Для определения класса точности ТТ вводятся понятия:

  • погрешности по току ΔI=I2−I1′{\displaystyle \Delta I=I_{2}-I_{1}^{‘}}, где I2{\displaystyle I_{2}} — действительный вторичный ток, I1′=I1n{\displaystyle I_{1}^{‘}=I_{1}/n} — приведённый первичный ток, I1{\displaystyle I_{1}} — первичный ток, n{\displaystyle n} — коэффициент трансформатора тока;
  • погрешности по углу δ=α1−α2{\displaystyle \delta =\alpha _{1}-\alpha _{2}}, где α1{\displaystyle \alpha _{1}} — теоретический угол сдвига фаз между первичным и вторичным токами α1{\displaystyle \alpha _{1}} = 180°, α2{\displaystyle \alpha _{2}} — действительный угол между первичным и вторичным током;
  • относительной полной погрешности ε%=(|I1′−I2|)|I1′|{\displaystyle \varepsilon \%=(|I_{1}^{‘}-I_{2}|)/|I_{1}^{‘}|}, где |I1′|{\displaystyle |I_{1}^{‘}|} — модуль комплексного приведённого тока.

Погрешности по току и углу объясняются действием тока намагничивания.
Для промышленных трансформаторов тока устанавливаются следующие классы точности: 0,1; 0,5; 1; 3, 10Р.
Согласно ГОСТ 7746-2001 класс точности соответствует погрешности по току ΔI, погрешность по углу равна: ±40′ (класс 0,5); ±80′ (класс 1), для классов 3 и 10Р угол не нормируется.
При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичной цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Добавление после обозначения класса точности трансформаторов тока литеры S (например 0,5 S) означает, что трансформатор будет находиться в классе точности от 0,01 до 1,2 номинального тока.
Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10 % при максимальном токе КЗ и заданном сопротивлении вторичной цепи.
Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной обмотке тока 0,2—200 % номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.

Оцените статью:
Оставить комментарий
Adblock
detector