Шкала электромагнитных волн

Применение

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

Используются для технологического контроля микроэлектронных изделий и позволяют выявлять основные виды дефектов и изменения в конструкции электронных блоков.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения.

При помощи рентгеновских лучей может быть определён химический состав вещества. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия — раздел лучевой терапии, охватывающий теорию и практику лечебного применения. Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи.

Шкала электромагнитных волн

Электромагнитные волны различных частот существенно различаются по своим свойствам. Поэтому их можно условно разделить на виды, построив шкалу электромагнитных волн.

Низкочастотные (сверхдлинные) волны ($10^4$ Гц и менее)

Электромагнитные волны такой частоты имеют большую длину волны (порядка километров), они способны огибать препятствия больших размеров, способны проникать в толщу воды и грунта. Но, их сложно генерировать и принимать. Кроме того, низкая частота обуславливает малую информационную емкость таких волн. Поэтому, хотя электрические колебания низких частот находят очень широкое применение в народном хозяйстве, электромагнитные волны этого диапазона используются в основном лишь в научных исследованиях Земли.

Радиоволны (^4$ Гц – ^{11}$ Гц)

Электромагнитные волны этого диапазона имеют длину от сантиметров до километра, достаточно легко генерируются и принимаются. При этом, радиоволны частотой менее 3 МГц достаточно хорошо огибают кривизну Земли, способны проходить сквозь не слишком толстые непроводящие преграды и распространяются на несколько сотен километров, а радиоволны частотой до 30МГц – дополнительно способны отражаться от верхних слоев атмосферы, и полностью огибать Землю. Поэтому радиоволны этих диапазонов очень широко используются для связи.

Радиоволны частотами свыше 1 ГГц очень слабо проходят сквозь препятствия, отражаясь от них. Поэтому радиоволны такой частоты используются в радиолокации.

Световое излучение ($10^{11}$ Гц – $10^{18}$ Гц)

Электромагнитные волны данного диапазона имеют длину волны от единиц до тысяч нанометров и включают себя инфракрасное излучение нагретых тел, видимый свет и ультрафиолетовое излучение. Такие волны генерируются нагретыми предметами, чем больше температура – тем больше частота излучения.

Видимый свет в этом диапазоне занимает узкую полосу $3.5×10^{14}$ Гц – $7.5×10^{14}$ Гц. Прозрачность атмосферы Земли для данного диапазона обуславливает огромное значение зрения для живых существ.

Рентгеновское излучение ($10^{18}$ Гц – $10^{20}$ Гц)

Для генерации излучения таких частот необходимы либо очень высокие температуры, либо возбуждение атомов вещества потоком частиц (так происходит в катодных трубках), поскольку длина волны сравнима с размерами атомов. Это излучение обладает высокой проникающей способностью сквозь непроводящие вещества, что дает возможность широкого использования его в медицине и дефектоскопии.

Гамма-излучение ($10^{20}$ Гц и выше)

Излучение таких высоких частот генерируют ядра атомов при ядерных реакциях, длина волны здесь сравнима с размером атомных ядер. Также гамма-излучение является основной составляющей космических лучей, в которых оно имеет наиболее высокие частоты (и наиболее высокие энергии). Поэтому гамма-излучение играет большую роль при космических исследованиях. Кроме того, поскольку гамма-лучи оказывают разрушительное влияние на живую ткань, они находят применение в лечении онкологических заболеваний.

Резюмируя все сказанное, можно построить таблицу шкалы электромагнитных волн:

Рис. 3. Таблица шкалы электромагнитных волн.

Что мы узнали?

Весь диапазон электромагнитных волн можно условно разбить на поддиапазоны, в которых свойства волн достаточно отличаются друг от друга, составив своеобразную шкалу. В нее войдут свехдлинные волны, радиоволны, световое, рентгеновское и гамма-излучение.

Шкала электромагнитных волн

Длина волны или связанная с ней частота волны характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

Антена

1) Низкочастотные волны(λ>);

2) Радиоволны();

Атом
3) Инфракрасное излучение(м);

4) Световое излучение();

5) Рентгеновское излучение();

Атомные ядра

6) Гамма излучение(λ).

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Микроволновый диапазон

Микроволновое излучение используется для подогрева еды в микроволновых печах, мобильной связи, радарах (радиолокаторах), до 300 ГГц легко проходит атмосферу, поэтому пригодно для спутниковой связи. В этом диапазоне работают радиометры для дистанционного зондирования и определения температуры разных слоев атмосферы, а также радио телескопы. Этот диапазон является одним из ключевых для спектроскопии ЭПР и вращательных спектров молекул. Длительное воздействие на глаза вызывает катаракту. Мобильные телефоны отрицательно влияют на головной мозг.


Радиотелескоп

Характерной особенностью микроволновых волн является то, что их длина волны сравнима с размерами аппаратуры. Поэтому в этом диапазоне приборы конструируются на основе распределенных элементов. Для передачи энергии используются волноводы и полосковые линии, а в качестве резонансных элементов – объемные резонаторы или резонансные линии. Рукотворными источниками МВ волн являются клистроны, магнетроны, лампы бегущей волны (ЛБВ), диоды Ганна, лавинно-пролетные диоды (ЛПД). Кроме того существуют мазеры, аналоги лазеров в длинноволновых диапазонах.

Микроволновые волны излучаются звездами.

В микроволновом диапазоне находится так называемое космическое фоновое микроволновое излучение (реликтовое излучение), которое по своим спектральным характеристикам полностью соответствует излучению абсолютно черного тела с температурой 2,72К. Максимум его интенсивности приходится на частоту 160 ГГц (1,9мм) (см. рис. ниже). Наличие этого излучения и его параметры являются одним из аргументов в пользу теории Большого Взрыва, которая в настоящее время является основой современной космологии. Последний, согласно, в частности, этим измерениям и наблюдениям, произошел 13,6 миллиардов лет назад.

Выше 300 ГГц (короче 1 мм) электромагнитные волны очень сильно поглощаются атмосферой Земли. Атмосфера начинает быть прозрачной в ИК и видимом диапазонах.

Литература:

  1. Wikipedia. Microwave.

Особенности электромагнитного излучения разных диапазонов

Распространение электромагнитных волн, временны́е зависимости электрического E(t){\displaystyle {\mathit {E}}(t)} и магнитного H(t){\displaystyle {\mathit {H}}(t)} полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.

Электромагнитные излучения различных частот взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволн обычно можно описать с помощью соотношений классической электродинамики; а вот для волн оптического диапазона и, тем более, жёстких лучей необходимо учитывать уже их квантовую природу.

Основные источники электромагнитного излучения

  • Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
  • Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
  • Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
  • Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.

Излучение от бытовых электроприборов

Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.

  • Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
  • Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
  • Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
  • Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
  • Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
  • Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
  • Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
  • Электропроводка и розетки. Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
  • Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.

Характеристики электромагнитного излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и .

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определённые более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и её разделы) и радиофизика. Жёстким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестаёт быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при ещё более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из завершённых и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Виды энергии:
Механическая
Потенциальная
Кинетическая
‹› Внутренняя
Гравитационная
Электрическая
Электромагнитная
Химическая
Ядерная
∅{\displaystyle \emptyset } Вакуума
Гипотетические:
  Тёмная

электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Радиоволны и микрочастоты

Радиостанции вещают на частотах от 150 тыс. Гц до примерно 20 млн. Гц. Каждая станция использует какую-то определенную частоту, так что приемники, настроенные на данную станцию, принимают лишь радиоволны с частотой, на которой передает данная станция. Наземные телевизионные передатчики посылают сигналы с частотами от примерно 70 Мгц до 800 Мгц (1 мегагерц (Мгц) — это 1 млн герц).

Спутниковое телевидение работает на еще более высоких частотах. Испускаемые спутником электромагнитные волны улавливаются небольшими параболическими антеннами, направленными на спутник.

Радиолокаторы принимают посланные ими радиоимпульсы, отраженные от самолетов, кораблей и облаков, чтобы установить местоположение этих объектов, которые могут находиться на расстоянии многих километров. Доплеровские локаторы измеряют скорость движущихся объектов по незначительным изменениям частоты отраженных волн.

Мобильные телефоны посылают и принимают радиосигналы сверхвысокой частоты (СВЧ).

Излучения в сегодняшних смартфонах резко увеличивается в момент разговора между абонентами. В недавней статье мы публиковали рейтинг смартфонов с самым большим излучением электромагнитных волн.

СВЧ-волны — это самые короткие радиоволны, их длина составляет миллионные доли метра, поэтому их называют микроволнами. В микроволновых печах применяются волны несколько миллиметров, что соответствует частотам в миллиарды герц. В СВЧ-диапазон входят и волны, частота которых равна частоте колебаний молекул воды. В микроволновой печи СВЧ-волны раскачивают молекулы воды, энергия их колебаний преобразуется в тепло, и еда нагревается.

Презентация на тему: » Спектр электромагнитных волн 08.12.2014 Запишите тему урока:» — Транскрипт:

1

Спектр электромагнитных волн Запишите тему урока:

2

Начертите таблицу Вид излучения Диапа- зон частот (длин) волн Источ- ники излучения Свойства Примене- ние

3

Виды электромагнитных волн Низкочастотные волны; Радиоволны; Сверхвысокочастотные излучения; Инфракрасное излучение; Видимый свет; Ультрафиолетовое излучение; Рентгеновское излучение; Гамма-излучение. Низкочастотные волны; Радиоволны; Сверхвысокочастотные излучения; Инфракрасное излучение; Видимый свет; Ультрафиолетовое излучение; Рентгеновское излучение; Гамма-излучение.

4

Пример заполнения таблицы п/ п Вид излучения Диапаз он частот (длин) волн Источники излучения Свойства Применение 1.Низко- частотные волны 0 до 2·10 4 Г ц (1,5· м) Переменный ток соответствующей частоты Почти не излучаются линии передачи переменного тока

5

п/п Вид излучения Диапазон частот (длин) волн Источники излучения Свойства Применение 1.Низкочастот- ные волны 0 до 2·10 4 Гц (1,5· м) Переменный ток соответствующей частоты почти не излучаются линии передачи переменного тока 2. Радиоволны (1886 г. Г. Герц) 2· Гц (0,3- 1,5·10 4 м) Переменный ток-хорошо излучаются; -передаются на расстояние; -отражаются; -огибают земную поверхность радиовещание, телевидение, радиолокация 3. Сверхвысокочаст отное (СВЧ) или микроволновое ·10 11 Гц (1 мм-0,3 м) Изменение направления спина валентного электрона или скорости вращения молекул вещества — проникают через атмосферу космическая связь, бытовые микроволновые СВЧ-печи

6

4. Инфракрасное излучение ( 1800 г.У. Гершель) 3· ,85·10 14 Гц (780 нм-1 мм) Колебания и вращение молекул вещества -интенсивность излучения зависит от температуры тела; измерение температуры тела по интенсивности излучения, бинокли ночного видения, ИСЗ- прогнозирование урожая, физиотерапия, дистанционное управление теле- и видеоаппаратурой 5. Видимое излучение 3,85· ,89·10 14 Гц (380 нм- 780 нм) Валентные электроны в атомах и молекулах, меняющие свое положение в пространстве; свободные заряды, движущиеся ускоренно -максимум излучения приходится на длину волны 560 нм; — вызывают ощущение цвета; — влияние на химические процессы, протекающие в организме; — фотосинтез полярное сияние, Солнце, светлячки, рыбы, экраны телевизоров

7

6. Ультрафиолетов ое излучение (1801 г. И. Риттер) 8· ·10 16 Гц ( нм) Валентные электроны атомов и молекул, ускоренно движущиеся свободные заряды -синтез витамина D 2 в организме; — вызывает загар, большая доза- ожог кожи раковые заболевания, ослабление иммунной системы; — оказывает бактерицидное действие; — сильно поглощается озоновым слоем; -действует на хлорид серебра; фотография, выявление скрытых надписей и отпечатков, в медицине

8

7. Рентгеновское излучение (1895 г. В. Рентген) 3· ·10 20 Гц ( м) Изменение состояния электронов внутренних оболочек атомов или молекул, ускоренно движущиеся электроны — тень за непрозрачными предметами; — свечение экрана, покрытого платиносинерод истым барием; — большая проникающая способность; -вызывает ожоги и изменение состава крови рентгеноструктурный анализ, изучение структуры молекул, обнаружение дефектов в образцах, в медицине, криминалистика, обнаружение звезд, оболочек сверхновых звезд и галактик

9

8.γ-излучение (1900 г. П. Виллар) γ>3·10 20 Гц (λ

10

Сходства Отличия длина волны электромагнитная природа частота волновые свойства источники биологическое действие проникающая способность скорость распространения в вакууме

Аннотация

Чувствительность нашего зрительного аппарата к свету чрезвычайно велика. По современным измерениям для получения светового ощущения достаточно, чтобы на глаз при благоприятных обстоятельствах попадало около 10-17Дж световой энергии в секунду, т. е. мощность, достаточная для ощутимого светового раздражения, равны 10-17Вт. Трудно переоценить значение света в продуктивной жизни человека, т. к. большинство информации поступает в мозг человека именно через зрительные нервы.

Химическое действие света можно наблюдать при выцветании различных красок.

Нагревание тел при поглощении света есть самый общий и наиболее легко осуществимый процесс, который может быть использован для обнаружения и использования световой энергии.

Освещение металлической поверхности может вызвать вырывание из нее электронов.

Из перечисленных примеров видно, сколь разнообразны могут быть действия света поэтому, в данной работе раскрывается природа света, и объясняются многие явления им вызываемые.

Цвета света

Что мы видим, когда наблюдаем отраженный свет от объекта. Когда свет попадает на объект несколько длин колебаний поглощаются этим объектом, а некоторые отражаются. Свет различных длин волн выглядит как разные цвета. Когда мы видим объект определенного цвета, что означает, что свет этого цвета отражается от объекта. Например, когда вы видите красную рубашку, рубашка поглощает все цвета света, за исключением красного. Частота света, который мы видим, является отражение красного и мы видим эту рубашку как красную.

Черный и белый немного отличается от других цветов. Белый – это сочетание всех цветов, поэтому когда мы видим белый, объект отражает все цвета света. Черный является противоположностью. Когда мы видим черный объект, то это означает, что почти все цвета света поглощаются.

Аддитивные цвета

Аддитивные основные цвета могут быть объединены, чтобы сделать любой другой цвет. Это три цвета красный, синий и зеленый. Этот факт используется все время в технологиях, таких как компьютерные экраны и телевизоры. Объединяя только три основных вида света различными способами, можно сделать любой цвет.

 Субтрактивные цвета

Если есть белый свет и хотите вычесть цвета, чтобы получить любой другой цвет, то необходимо использовать основные субтрактивные цвета для фильтрации или удаления света определенных цветов. Первичные субтрактивные цвета — голубой, пурпурный и желтый.

Характеристики электромагнитного излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и .

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определённые более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и её разделы) и радиофизика. Жёстким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестаёт быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при ещё более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из завершённых и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Виды энергии:
Механическая Потенциальная Кинетическая
‹› Внутренняя
Электромагнитная Электрическая Магнитная
Химическая
Ядерная
G{\displaystyle G} Гравитационная
∅{\displaystyle \emptyset } Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии

электромагнитные волны в свободном пространстве — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Оцените статью:
Оставить комментарий
Adblock
detector