Технологии полупроводников. часть 1
Содержание
- 1 Характеристика полупроводников
- 2 Сотрудничество с ВУЗами
- 3 Основные разновидности
- 4 Двухэлементные соединения
- 5 Методы получения
- 6 БЕСЕДА ШЕСТАЯ. ПОЛУПРОВОДНИКИ И ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
- 7 Основные электрофизические свойства
- 8 Старосельский В.И. Физика полупроводниковых приборов микроэлектроники
- 9 3.3. Примесные полупроводники
- 10 Виды полупроводников
- 11 Структурные дефекты
Характеристика полупроводников
Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.
Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.
Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.
Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.
Сотрудничество с ВУЗами
На базе базового центра проектирования (дизайн-центра) ОКБ создан и действует учебный центр в составе филиалов трех базовых кафедр Новосибирского государственного технического университета и Сибирского государственного университета телекоммуникаций и информатики.Совместно с Институтом физики полупроводников им. А. В. Ржанова СО РАН и АО «Росэлектроника» предприятие участвует в разработке полупроводниковых пластин для фоточувствительных приемников нового поколения.Совместно с Институтом физики полупроводников им. А. В. Ржанова СО РАН и компаниями SVTC и Sygma-Group предприятие входит в кластер микро-, нано- и биоэлектроники.
Основные разновидности
Кабели и провода разделяются по их назначению. Первыми созданными изделиями были те, что использовались для доставки электрической энергии конечному потребителю. Они называются силовыми. Затем эксперименты показали, что передавать электричество лучше в виде переменного тока. Чем выше напряжение, тем меньше энергии терялось в процессе транспортировки, поэтому начали искать оптимальные значения. В итоге силовые электрокабели стали подразделять на:
- Провода, по которым подаётся электрический ток от электростанций в населённые пункты. Напряжение составляет 20−150 кВт.
- Эл. кабели, приносящие энергию к потребителю (110−380 Вт).
Когда произошло развитие телефонии, были изобретены и отдельные виды проводов. Для функционирования телефона не требуется большое напряжение, поэтому применять силовые линии нерационально. Также для подключения к связи большого количества домов необходимы провода, количество жил в которых было бы соответствующим.
После того как появилось радио и телевидение потребовались совершенно другие специальные кабели, которые соединяли устройство воспроизведения с антенной. Главным отличием их от других является наличие экранирования. Если оно отсутствует, сигнал получается слабым и искажённым.
С появлением компьютеров возникла необходимость соединять их в одну большую сеть. Для этого понадобились новые типы проводов. Сначала применялись телефонные линии, но они не могли обеспечить требуемую скорость обмена данными. Прорывом в этой сфере можно считать появление оптоволокна, позволяющего передавать информацию с большой скоростью без потерь. Чтобы создать местные сети, стали применять кабели по типу «витая пара».
Двухэлементные соединения
Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.
Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.
Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
БЕСЕДА ШЕСТАЯ. ПОЛУПРОВОДНИКИ И ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
Ты, юный друг, современник технической революции во всех областях радиоэлектроники. Суть ее заключается в том, что на смену электронным лампам пришли полупроводниковые приборы, а их теперь все больше теснят микросхемы.
Предком одного из наиболее характерных представителей «армии» полупроводниковых приборов — транзистора — был так называемый генерирующий детектор, изобретенный еще в 1922 г. советским радиофизиком О. В. Лосевым. Этот прибор, представляющий собой кристалл полупроводника с двумя примыкающими к нему проволочками — проводниками, при определенных условиях мог генерировать и усиливать электрические колебания. Но он тогда из-за несовершенства не мог конкурировать с электронной лампой. Достойного полупроводникового соперника электронной лампе, названного транзистором, создали в 1948 г. американские ученые Браттейн, Бардин и Шокли. В нашей стране большой вклад в разработку полупроводниковых приборов внесли А. Ф. Иоффе, Л. Д. Ландау, Б. И. Давыдова, В.Е. Лошкарев и ряд других ученых и инженеров, многие научные коллективы.
Чтобы понять сущность явлений, происходящих в современных полупроводниковых приборах, нам придется «заглянуть» в структуру полупроводника, разобраться в причинах образования в нем электрического тока. Но перед этим хорошо бы тебе вспомнить ту часть первой беседы, где я рассказывал о строении атомов.
ПОЛУПРОВОДНИКИ И ИХ СВОЙСТВА
Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока. К сказанному добавлю, что к группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе. К полупроводникам, нашедшим практическое применение в технике, относятся германий, кремний, селен, закись меди и некоторые другие вещества. Но для полупроводниковых приборов используют в основном только германий и кремний.
Каковы наиболее характерные свойства полупроводников, отличающие их от проводников и непроводников тока? Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю ( — 273°С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводимыми, т.е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается. Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается. Эти и некоторые другие свойства полупроводников были известны сравнительно давно, однако широко использовать их стали сравнительно недавно.
Основные электрофизические свойства
Основные электрофизические свойства важнейших полупроводниковых материалов (ширина запрещённой зоны, подвижность носителей тока, температура плавления и т. д.) представлены в табл. 1. Ширина запрещённой зоны DEg является одним из фундаментальных параметров полупроводниковых материалов. Чем больше DEg, тем выше допустимая рабочая температура и тем более сдвинут в коротковолновую область спектра рабочий диапазон приборов, создаваемых на основе соответствующих полупроводниковых материалов. Например, максимальная рабочая температура германиевых приборов не превышает 50-60 °C, для кремниевых приборов она возрастает до 150—170 °C, а для приборов на основе GaAs достигает 250—300 °C; длинноволновая граница собственной фотопроводимости составляет: для InSb — 5,4 мкм (77 К), InAs — 3,2 мкм (195 К), Ge — 1,8 мкм (300 К), Si — 1 мкм (300 К), GaAs — 0,92 мкм (300 К). Величина DEg хорошо коррелирует с температурой плавления. Обе эти величины возрастают с ростом энергии связи атомов в кристаллической решётке, поэтому для широкозонных полупроводниковых материалов характерны высокие температуры плавления, что создаёт большие трудности на пути создания чистых и структурно совершенных монокристаллов таких полупроводниковых материалов. Подвижность носителей тока в значительной мере определяет частотные характеристики полупроводниковых приборов. Для создания приборов сверхвысокочастотного диапазона необходимы полупроводниковые материалы, обладающие высокими значениями m. Аналогичное требование предъявляется и к полупроводниковым материалам, используемым для изготовления фотоприемников. Температура плавления и период кристаллической решётки, а также коэффициент линейного термического расширения играют первостепенную роль при конструировании гетероэпитаксиальных композиций. Для создания совершенных гетероструктур желательно использовать полупроводниковые материалы, обладающие одинаковым типом кристаллической решётки и минимальными различиями в величинах её периода и коэффициентах термического расширения. Плотность полупроводниковых материалов определяет такие важные технические характеристики, как удельный расход материала, масса прибора.
Таблица 1. Основные свойства важнейших полупроводниковых материалов.
Элемент, тип соединения | Наименование материала | Ширина запрещённой зоны, эв | Подвижность носителей заряда, 300 K, см2/(в×сек) | Кристаллическая структура | Постоянная решётки, A | Температура плавления, °С | Упругость пара при температуре плавления, атм | ||
---|---|---|---|---|---|---|---|---|---|
при 300 К | при 0 К | электроны | дырки | ||||||
Элемент | С (алмаз) | 5,47 | 5,51 | 2800 | 2100 | алмаз | 3,56679 | 4027 | 10−9 |
Ge | 0,661 | 0,89 | 3900 | 1900 | типа алмаза | 5,65748 | 937 | ||
Si | 1,12 | 1,16 | 1500 | 600 | типа алмаза | 5,43086 | 1420 | 10−6 | |
α-Sn | ~0,08 | типа алмаза | 6,4892 | ||||||
IV—IV | α-SiC | 3 | 3,1 | 400 | 50 | типа сфалерита | 4,358 | 3100 | |
III—V | AISb | 1,63 | 1,75 | 200 | 420 | типа сфалерита | 6,1355 | 1050 | <0,02 |
BP | 6 | типа сфалерита | 4,538 | >1300 | >24 | ||||
GaN | 3,39 | 440 | 200 | типа вюртцита | 3,186 (по оси a) 5,176 (по оси с) | >1700 | >200 | ||
GaSb | 0,726 | 0,80 | 2500 | 680 | типа сфалерита | 6,0955 | 706 | <4⋅10−4 | |
GaAs | 1,424 | 1,52 | 8500 | 400 | типа сфалерита | 5,6534 | 1239 | 1 | |
GaP | 2,27 | 2,40 | 110 | 75 | типа сфалерита | 5,4505 | 1467 | 35 | |
InSb | 0,17 | 0,26 | 78000 | 750 | типа сфалерита | 6,4788 | 525 | <4⋅10−5 | |
InAs | 0,354 | 0,46 | 33000 | 460 | типа сфалерита | 6,0585 | 943 | 0,33 | |
InP | 1,34 | 1,34 | 4600 | 150 | типа сфалерита | 5,8688 | 1060 | 25 | |
II—VI | CdS | 2,42 | 2,56 | 300 | 50 | типа вюртцита | 4,16 (по оси a) 6,756 (по оси с) | 1750 | |
CdSe | 1,7 | 1,85 | 800 | типа сфалерита | 6,05 | 1258 | |||
ZnO | 3,36 | 200 | кубич. | 4,58 | 1975 | ||||
ZnS | 3,6 | 3,7 | 165 | типа вюртцита | 3,82 (по оси a) 6,26 (по оси с) | 1700 | |||
IV—VI | PbS | 0,41 | 0,34 | 600 | 700 | кубич. | 5,935 | 1103 | |
PbTe | 0,32 | 0,24 | 1700 | 840 | кубич. | 6,460 | 917 |
Старосельский В.И. Физика полупроводниковых приборов микроэлектроники
Предисловие
Автор настоящей книги задумывал ее как учебное пособие для студентов факультета электроники и компьютерных технологий Московского государственного института электронной техники (технического университета), обучающихся по направлению 210100 «Электроника и микроэлектроника» (210100.62 – бакалавр, 210100.68 — магистр) и по инженерным специальностям 210104.65 «Микроэлектроника и твердотельная электроника», 210108.65 «Микросистемная техника», 010803.65 «Микроэлектроника и полупроводниковые приборы», 210601.65 «Нанотехнологии в электронике» и специализирующихся в области проектирования и технологии изготовления полупроводниковых интегральных схем.
В учебном пособии использованы материалы лекционных курсов «Элементы твердотельной электроники и микроэлектроники», «Физика полупроводниковых приборов» «Физика полупроводников и полупроводниковых приборов», а также факультативных курсов, прочитанных автором студентам МИЭТ (ТУ) на протяжении более 30 лет. Материалы дополнены новыми сведениями в области теории и проектирования полупроводниковых приборов с субмикронными размерами активных областей и приборов на новых полупроводниковых материалах микроэлектроники.
В то же время содержание учебного пособия по объему и глубине изложения выходит далеко за пределы учебных планов указанных направлений (специальностей). В книге нашли отражения также и результаты многочисленных научных исследований автора в области физики кремниевых и арсенидгаллиевых полупроводниковых приборов, в том числе МДП- и биполярных транзисторов, гетеропереходных полевых транзисторов, СВЧ приборов
Обладая разносторонними знаниями как в области физики, так и в области проектирования полупроводниковых приборов, автор при изложении материала обращает внимание на особенности использования изучаемого прибора в интегральных схемах, исследует предельные возможности приборов, большое внимание уделяет рассмотрению моделей приборов для схемотехнического применения
К сожалению, автор не успел увидеть свою книгу изданной. Книга редактировалась уже после его скоропостижной кончины. Этим он лишил нас возможности проводить научные и методические дискуссии по вопросам, возникающим в процессе редактирования.
3.3. Примесные полупроводники
Для большинства полупроводниковых приборов используются примесные полупроводники
Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда наблюдается при достаточно высокой температуре, т.е. с большой шириной запрещенной зоны
Поставщиками свободных носителей зарядов в рабочем интервале температур в таких ПП являются примеси.
Примесями в простых полупроводниках являются чужеродные атомы. В химических же соединениях это не только чужеродные атомы, но и атомы тех самых элементов, избыточные по стехиометрическому составу. Кроме того, роль примесей играют дефекты кристаллической решетки.
Рассмотрим роль примесей, атомы которых создают дискретные энергетические уровни в запрещенной зоне полупроводника.
3.3.1. Донорные примеси
Если в кристаллическую решетку IV валентного элемента ввести атом элемента с валентностью V, то четыре электрона на его внешней оболочке свяжутся с четырьмя атомами IV валентного элемента, а один электрон становится избыточным, слабосвязанным со своим атомом. Он под вличнием тепловой энергии начнет свободно блуждать по полупроводнику, а под воздействием электрического поля он станет направленно перемещаться (электропроводность типа n ), а атом, отдавший электрон, будет неподвижно находиться в данном месте решетки полупроводника.
Рис. 3.2 Схематическое изображение кристаллической решетки Ge с донорной примесью мышьяка.
С точки зрения энергетических диаграмм донорные примеси образуют заполненные энергетические уровни в запрещенной зоне вблизи дна зоны проводимости. При этом энергия активации примесных атомов меньше ширины запрещенной зоны, поэтому при нагреве тела переброс электронов примеси будет опережать возбуждение электронов решетки.
Рис. 3.3. Энергетическая диаграмма донорного полупроводника.
3.3.2. Акцепторные примеси
Если в решетку IV валентного полупроводника ввести III элемент, например, бор, то он установит три ковалентные связи с атомами германия, для связи с четвертым атомом германия у атома бора нет электрона. Таким образом, у нескольких атомов германия будет по одному электрону без ковалентной связи. Достаточно теперь небольших внешних воздействий, чтобы эти электроны покинули свои места, образовав дырки у атомов германия. Освободившиеся электроны, захваченные атомами бора, не могут создать электрический ток. А дырки у атомов германия позволяют электронам с соседних атомов перейти на них, освобождая другие дырки. Т.о., положительно заряженная дырка будет перемещаться по кристаллу, а под действием поля возникает примесный дырочный ток.
Рис. 3.4. Схематическое изображение кристаллической решетки Ge с акцепторной примесью In.
С точки зрения зонной теории, акцепторная примесь образует незаполненные энергетические уровни в запрещенной зоне вблизи потолка валентной зоны. Тепловое возбуждение будет в первую очередь перебрасывать электроны из валентной зоны на эти энергетические уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в образовании электрического тока. Такой полупроводник будет иметь концентрацию дырок, большую концентрации электронов, перешедших из валентной зоны в зону проводимости. И его относят к полупроводнику p-типа.
Рис. 3.5. Энергетическая диаграмма акцепторного полупроводника.
3.3.3. Основные и неосновные носители зарядов
Те носители, концентрация которых в данном полупроводнике больше, носят название основных, а те, которых меньше – неосновных. Так, в полупроводнике n-типа электроны являются основными носителями зарядов, а дырки – неосновными (nn и pn соответственно). Концентрация свободных электронов в зоне проводимости может быть различной. В большинстве случаев используются слаболегированные полупроводники; электроны в этом случае заполняют незначительную часть уровней в зоне проводимости. Такое состояние называют невырожденным. В полупроводнике p-типа основные носители – дырки (pp), а неосновные – электроны (np). Примесная электропроводность для своего появления требует меньших энергетических воздействий (сотые или десятые доли электронвольта), чем собственная, поэтому она обнаруживается при более низкой температуре, чем собственная электропроводность полупроводника. В примесном полупроводнике при данной температуре справедливо соотношение:
p·n = ni2 (3.5)
При нормальной температуре можно считать, что все примеси ионизированы. Тогда, например, в электронном полупроводнике концентрация основных носителей:
nn » Nд, а pn » ni2/Nд
а в дырочном:
pp » Na, a np » ni2/Na.
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
- σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}
где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602⋅10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
- σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
- σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}
Дырочные полупроводники (р-типа)
Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
- σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}
Структурные дефекты
Основными структурными дефектами в монокристаллах и эпитаксиальных слоях полупроводниковые материалы являются дислокации, собственные точечные дефекты и их скопления, дефекты упаковки. При выращивании монокристаллов дислокации возникают под действием термических напряжений, обусловленных неоднородным распределением температуры в объёме слитка. Другими источниками дислокаций в монокристаллах являются дислокации, прорастающие из затравки, примесные неоднородности, отклонения от стехиометрического состава. Часто дислокации образуют в кристаллах устойчивые скопления — малоугловые границы. Основными способами снижения плотности дислокаций в монокристаллах являются: уменьшение уровня термических напряжений путём подбора соответствующих тепловых условий выращивания, обеспечение равномерного распределения состава в объёме, строгий контроль стехиометрического состава, введение «упрочняющих» примесей, затрудняющих движение дислокаций и их размножение. В настоящее время даже в промышленных условиях выращивают бездислокационные монокристаллы Si диаметром до 250 мм. Успешно решается задача получения бездислокационных монокристаллов Ge, GaAs, InSb и др. полупроводниковых материалов.
В эпитаксиальных композициях основными источниками дислокаций являются: напряжения несоответствия, обусловленные различием периодов решётки сопрягающихся материалов; термические напряжения из-за различия коэф. термического расширения сопрягающихся материалов или неравномерного распределения температуры по толщине и поверхности наращиваемого слоя; наличие градиента состава по толщине эпитаксиального слоя. Особенно трудна задача получения малодислокационных гетерокомпозиций. Для снижения плотности дислокаций в рабочем слое заданного состава используют технику создания промежуточных по составу «градиентных» слоев или подбирают изопериодные (с близкими значениями периодов кристаллической решётки) гетеропары. При выращивании на монокристаллической подложке бинарных соединений для создания изопериодных гетеропар используют четверные твёрдые растворы, в состав которых входит и вещество подложки.
Важнейшими собственными точечными дефектами в Ge и Si являются вакансии и междоузельные атомы, а также различного рода комплексы, образующиеся в результате взаимодействия этих дефектов между собой или с атомами остаточных и легирующих примесей. В бинарных соединениях точечными дефектами могут быть вакансии в любой из подрешёток, междоузельные атомы обоих компонентов, которые могут находиться в решётке в различных положениях, атомы компонента В на местах атомов А и наоборот. Как и в элементарных полупроводниковых материалах, эти «простые» собственные точечные дефекты могут взаимодействовать между собой и с примесями с образованием разнообразных комплексов. Ещё более сложной выглядит картина образования дефектов в многокомпонентных соединениях и твёрдых расплавах. Собственные точечные дефекты образуются при нагреве, облучении частицами высоких энергий, пластичных деформациях; существенную роль играет отклонение состава от стехиометрического. Наиболее эффективными способами снижения концентрации собственных точечных дефектов в полупроводниковых материалах является термообработка в различных средах. В случае химических соединений термообработку обычно проводят в атмосфере паров недостающего компонента, выбирая рабочие температуры с учётом конфигурации области гомогенности.