Взаимодействие магнитов
Содержание
Как избавиться от подвижных контактов
Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты – контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.
Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.
Немного из истории магнетизма
Исследование явления магнетизма началось много веков назад, когда еще в VI в. до н.э. в древнем Китае были обнаружен камни (горная порода), которые притягивали к себе железные предметы. В 1269 г. французский исследователь Петр Перегрин разместил на поверхности постоянного сферического магнита маленькие стальные иголки и увидел, что они расположились не хаотично, а по определенным линиям, которые пересекались в двух точках, названных “полюсами” по аналогии с географическими полюсами Земли. Можно сказать, что это была первая “визуализация” магнитных линий.
Только в 1845 г. английский физик Майкл Фарадей для понимания сути магнитных явлений сформулировал понятие “магнитного поля”. Он считал, что как электрическое, так и магнитное взаимодействия осуществляются посредством невидимых полей — электрического и магнитного. Магнитное поле непрерывно в пространстве и способно действовать на движущиеся заряды.
В 1831 г. Майкл Фарадей обнаружил, что переменное магнитное поле порождает электрическое и наоборот — непостоянное (изменяющееся во времени) электрическое поле создает магнитное поле. Это явление стало известно как закон электромагнитной индукции Фарадея. Слово индукция латинского происхождения (induction) означает “наведение, выведение”.
1841 год: первое определение координат магнитного полюса в Южном полушарии
В 1840 году повзрослевший Джеймс Кларк Росс отправился на судах «Эребус» и «Террор» в своё знаменитое путешествие к магнитному полюсу в Южном полушарии. 27 декабря корабли Росса впервые встретились с айсбергами и уже в новогоднюю ночь 1841 года пересекли Южный полярный круг. Очень скоро «Эребус» и «Террор» оказались перед паковыми льдами, растянувшимися от края до края горизонта. 5 января Росс принял смелое решение идти вперёд, прямо на льды, и углубиться настолько, насколько это окажется возможным. И уже через несколько часов такого штурма корабли неожиданно вышли в более свободное ото льда пространство: паковый лёд сменился разбросанными там и тут отдельными льдинами.
9 января утром Росс неожиданно для себя обнаружил впереди по курсу свободное ото льда море! Таково было его первое открытие в этом путешествии: он открыл море, которое впоследствии было названо его собственным именем, — море Росса. Справа по курсу обнаружилась гористая, покрытая снегом земля, которая вынуждала корабли Росса плыть на юг и которая, казалось, не собиралась кончаться. Плывя вдоль берега, Росс, конечно, не упускал возможности открывать самые южные земли во славу Британского королевства; так была открыта Земля Королевы Виктории. В то же время его беспокоило, что на пути к магнитному полюсу берег может стать непреодолимым препятствием.
Между тем поведение компаса становилось всё более странным. Росс, обладавший богатым опытом магнитометрических измерений, понимал, что до магнитного полюса осталось не более 800 км. Так близко к нему ещё никто не приближался. Вскоре стало ясно, что Росс опасался не зря: магнитный полюс явно находился где-то справа, а берег упорно направлял корабли всё дальше и дальше на юг.
Пока путь был открыт, Росс не сдавался
Ему было важно собрать, по крайней мере, как можно больше магнитометрических данных в разных точках побережья Земли Виктории. 28 января экспедицию ожидал самый удивительный сюрприз за всё время путешествия: на горизонте вырос огромный проснувшийся вулкан. Над ним висело тёмное облако дыма, окрашиваемого огнём, который столбом вырывался из жерла
Этому вулкану Росс дал имя Эребус, а соседнему — потухшему и несколько меньшему — дал имя Террор.
Росс попытался идти ещё дальше на юг, но очень скоро перед его глазами возникла совершенно невообразимая картина: вдоль всего горизонта, куда хватает глаз, простиралась белая полоса, которая по мере приближения к ней становилась всё выше и выше! Когда корабли подошли поближе, стало ясно, что перед ними справа и слева огромная бесконечная ледяная стена 50-метровой высоты, совершенно плоская сверху, без каких-либо трещин на обращённой к морю стороне. Это была кромка шельфового ледника, носящего ныне имя Росса.
В середине февраля 1841 года после 300-километрового плавания вдоль ледяной стены Росс принял решение прекратить дальнейшие попытки найти лазейку. С этого момента впереди оставалась лишь дорога домой.
Экспедицию Росса никак нельзя считать неудачной. Ведь ему удалось измерить магнитное наклонение в очень многих точках вокруг побережья Земли Виктории и установить тем самым положение магнитного полюса с высокой точностью. Росс указал такие координаты магнитного полюса: 75°05′ ю. ш., 154°08′ в. д. Минимальное расстояние, отделявшее корабли его экспедиции от этой точки, составляло всего 250 км. Именно измерения Росса нужно считать первым достоверным определением координат магнитного полюса в Антарктиде (Северного магнитного полюса).
Открытия Лоренца
Выделим основные открытия Лоренца.
Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:
(1.3.)
Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд.
(1.4.)
Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.
Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.
Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.
Домашняя работа.
Задание 1. Ответь на вопросы.
- Какие явления наблюдаются в цепи, в которой существует электрический ток?
- Какие магнитные явления вам известны?
- В чём состоит опыт Эрстеда?
- Какая связь существует между электрическим током и магнитным полем?
- Почему для изучения магнитного поля можно использовать железные опилки?
- Как располагаются железные опилки в магнитном поле прямого тока?
- Что называют магнитной линией магнитного поля?
- Для чего вводят понятие магнитной линии поля?
- Как на опыте показать, что направление магнитных линий связано с направлением тока
Задание 2. Проведите опыт.
ОПЫТЫ
С ЖЕЛЕЗНЫМИ ОПИЛКАМИ
Возьмите магнит любой формы, накройте его куском тонкого картона,
посыпьте сверху железными опилками и разровняйте их.
Так интересно наблюдать магнитные поля!
Ведь каждая «опилочка», словно магнитная стрелка, располагается вдоль магнитных линий.
Таким образом становятся «видимыми» магнитные линии магнитного поля вашего магнита.
При передвижении картона над магнитом (или наоборот магнита под картоном)
опилки начинают шевелиться, меняя узоры магнитного поля.
- https://www.kursoteka.ru/catalog/school/5
- http://www.umnik-umnica.com/ru/school/physics/11-klass/
- http://class-fizika.narod.ru
- https://www.youtube.com/watch?v=aGIWuE1iL28
- https://www.youtube.com/watch?v=Tt7hXaukl9U
Двигатель на постоянных магнитах
В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.
Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.