Магнит

Магнитные материалы

См. также: Магнитные материалы

Термин «магнит», как правило, используется в отношении объектов, которые имеют собственное магнитное поле даже в отсутствие приложенного магнитного поля. Такое возможно лишь в некоторых классах материалов. В большинстве же материалов магнитное поле появляется в связи с приложенным внешним магнитным полем; это явление известно как магнетизм. Существует несколько типов магнетизма, и каждый материал имеет, по крайней мере, один из них.

В целом поведение магнитного материала может значительно варьироваться в зависимости от структуры материала и, не в последнюю очередь, его электронной конфигурации. Существует несколько типов взаимодействия материалов с магнитным полем, в том числе:

  • Ферромагнетики и ферримагнетики — материалы, которые обычно и считаются магнитными. Они притягиваются к магниту достаточно сильно — так, что притяжение ощущается. Только эти материалы могут сохранять намагниченность и стать постоянными магнитами. Ферримагнетики сходны с ферромагнетиками, но слабее них. Различия между ферро- и ферримагнитными материалами связаны с их микроскопической структурой.
  • Парамагнетики — такие вещества, как платина, алюминий и кислород, которые слабо притягиваются к магниту. Этот эффект в сотни тысяч раз слабее, чем притяжение ферромагнитных материалов, поэтому он может быть обнаружен только с помощью чувствительных инструментов или очень сильных магнитов.
  • Диамагнетики — вещества, намагничивающиеся против направления внешнего магнитного поля. Диамагнитные, по сравнению с пара- и ферромагнитными, вещества, такие как углерод, медь, вода и пластики, отталкиваются от магнита. Все вещества, не обладающие одним из других типов магнетизма, являются диамагнитными; к ним относится большинство веществ. Силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы, однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например кусочки свинца, могут пари́ть, а поскольку углерод и вода являются веществами диамагнитными, в мощном магнитном поле могут пари́ть даже органические объекты, например живые лягушки и мыши.

Также существуют и другие виды магнетизма, например спиновые стёкла, суперпарамагнетизм, супердиамагнетизм и метамагнетизм.

Намагниченность

Мерой магнитного состояния вещества служит намагниченность М, которая определяется как плотность магнитного момента Кили как магнитный момент, отнесенный к единице объема:

Намагниченность измеряется в амперах на сантиметр (А/см).

Определение намагниченности подобно определению электрической поляризованности. Как и в случае электрического поля, смысл перехода к пределу в формуле (3) носит условный характер.

Намагничение ферромагнетиков (ферромагнитных тел) отличается рядом существенных особенностей. Они вызваны прежде всего тем, что даже при условии отсутствия внешнего поля и при отсутствии средней намагниченности ферромагнитные тела состоят из ряда маленьких областей, внутри которых неуравновешенные спиновые моменты соседних атомов ориентированы параллельно. Эти области оказываются самопроизвольно (спонтанно) намагниченными. В каждой из этих областей намагниченность близка к предельно возможной, или, как говорят, к намагниченности насыщения Мв (равной примерно 16000 А/см).

В соседних областях намагниченность может быть ориентирована по-разному (рисунок ниже).

На рисунке показано постепенное изменение ориентации спинов при переходе из одной области в другую, при том, что в соседних областях спины ориентированы прямопротивоположно. Для представления о порядке величин скажем, что по ширине области одинаковой  намагниченности может располагаться несколько миллионов атомов, а в пограничной зоне располагается в ряд около тысячи атомов. Считаясь с фактором существования таких областей, среднюю намагниченность в объеме V удобно представлять равенством:

Где Vi – объем i-й области, в которой намагниченность имеет значение Мi. Мср = 0 в размагниченном ферромагнетике, при том, что в каждой из областей:

Под влиянием внешнего поля средняя намагниченность ферромагнетика возрастает, в простейшем случае изотропного тела она оказывается направленной параллельно внешнему полю.

При намагничении ферромагнетика могут наблюдаться три разных процесса.

Первый процесс – это процесс смещения границ между соседними областями, приводящий к росту объема областей, имеющих слагающую намагниченность, ориентированную по полю. В результате этого процесса растет Мср за счет перераспределения объемов Vi.

Второй процесс называют процессом вращения, он заключается в поворачивании векторов самопроизвольной намагниченности, приближающем их направление к направлению внешнего поля.

Третий процесс заключается в незначительном увеличении магнитного момента внутри областей под влиянием внешнего поля.

На рисунке ниже схематически показаны процессы смещения границ и процессы вращения, В – индукция внешнего поля.

Существование областей самопроизвольной намагниченности обнаруживается экспериментальным путем посредством образования порошковых узоров (фигур) на границах областей – выходящее за пределы тела неоднородное поле создает силы, притягивающие мелкие частицы ферромагнитного порошка.

На рисунке ниже приведены фотографии порошковых фигур.

Последовательное фотографирование при изменении внешнего поля позволяет кинематографически  наблюдать движение границ между областями при намагничении тела.

Измерение магнитных свойств.

При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них –измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца

Ко второму относятся измерения «резонансных» частот, связанных с намагничением вещества. Атомы представляют собой крошечные «гироскопы» и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением

R = mv/eB,

где m – масса частицы, v – ее скорость, e – ее заряд, а B – магнитная индукция поля. Частота такого кругового движения равна

где f измеряется в герцах, e – в кулонах, m – в килограммах, B – в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными «естественным» частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором – циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне).

Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.

Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов

Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 1010 Гц/Тл для намагниченности, связанной с электронами, и порядка 107 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов

Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных «гироскопов» образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.

Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.

Намагничивающая сила и напряженность магнитного поля.

Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.

В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н:

где m0 – т.н. магнитная постоянная, имеющая универсальное значение 4pЧ10–7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н. Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже).

На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.

Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894–1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902–1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.

Медицина и вопросы безопасности

Из-за того, что человеческие ткани имеют очень низкий уровень восприимчивости к статическому магнитному полю, не существует научных доказательств его эффективности для использования в лечении любых заболеваний. По той же причине отсутствуют научные свидетельства опасности для здоровья человека, связанной с воздействием этого поля. Однако если ферромагнитное инородное тело находится в человеческих тканях, магнитное поле будет взаимодействовать с ним, что может представлять собой серьёзную опасность.

В частности, если кардиостимулятор был встроен в грудную клетку пациента, следует держать его подальше от магнитных полей. Именно по этой причине больные с установленным кардиостимулятором не могут быть протестированы с использованием МРТ, которое представляет собой магнитное устройство визуализации внутренних органов и тканей.

Дети иногда могут глотать небольшие магниты из игрушек. Это может быть опасно, если ребёнок проглотил два или более магнита, так как магниты могут повредить внутренние ткани; был зафиксирован как минимум один смертельный случай.

Магнитные полюса и магнитное поле.

Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.

Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.

Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)

М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.

Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I, расположен перпендикулярно линиям индукции, то по закону Ампера сила F, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

где F – сила в ньютонах, I – ток в амперах, l – длина в метрах. Единицей измерения магнитной индукции является тесла (Тл) (см. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ).

Расчет магнитных свойств.

Магнитная индукция поля Земли составляет 0,5Ч10–4 Тл, тогда как поле между полюсами сильного электромагнита – порядка 2 Тл и более.

Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био – Савара – Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I (ампер), на расстоянии r (метров) от провода равна

Индукция в центре кругового витка радиуса R с током I равна (в тех же единицах):

Плотно намотанная катушка провода без железного сердечника называется соленоидом. Магнитная индукция, создаваемая длинным соленоидом c числом витков N в точке, достаточно удаленной от его концов, равна

Здесь величина NI/L есть число ампер (ампер-витков) на единицу длины соленоида. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю.

Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M.

Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m0(H + Ha), или B = m0(H + M). Отношение M/H называетсямагнитной восприимчивостью и обозначается греческой буквой c; c – безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.

Величина B/H, характеризующая магнитные свойства материала, называется магнитной проницаемостью и обозначается через ma, причем ma = m0m, где ma – абсолютная, а m – относительная проницаемости,

В ферромагнитных веществах величина c может иметь очень большие значения –до 104ё106. Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных – немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3).

Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены.

Природа магнитной поляризации

Магнитный момент или электрокинетический момент (К = рм) является такой же основной характеристикой частицы, как и механический момент рφ (момент импульса). Эти две кинетические величины дополняют скалярные характеристики частицы: ее заряд q и массу m.

Естественно, что орбитальное движение электрона сопряжено с существованием магнитного момента. Действительно, движение электрона по орбите подобно контуру тока. Однако механическим и магнитным моментом обладают и сами частицы – этот момент, соответствующий как бы вращению частиц вокруг собственной оси, называют спином или спиновым моментом (от английского spin — вращение). Опыт Эйнштейна-де Гааза и прочие опыты с гиромагнитными эффектами подтверждает представление об электрокинетической природе моментов вещества. Эти опыты также показывают, что в случае ферромагнетиков основную роль играют спиновые моменты.

Гиромагнитные эффекты основываются на том, что при повороте магнитного момента под воздействием магнитного поля одновременно поворачивается и момент механический (момент импульса). Поэтому, например, в опыте Эйнштейна де Гааза при намагничивании образца изменение момента частиц компенсируется поворотом всего образца (в соответствии с законом сохранения момента импульса).

Очень интересным гиромагнитным эффектом является магнитный резонанс. Этот эффект находит ряд практических применений. Для того, чтобы понять этот эффект, следует ясно представить себе прецесионное движение волчка или гироскопа, которое в отсутствии трения происходит в соответствии с законом: скорость изменения момента импульса равна вращающему моменту:

Представим себе теперь в магнитном поле В (рисунок ниже) частицу с магнитным моментом рм и с механическим моментом рφ. Момент рм ориентирован по полю (как стрелка компаса), а момент рφ – в противоположную сторону, если момент создается частицей с отрицательным электрическим зарядом (электрон). Такая ориентация соответствует состоянию равновесия. Пусть теперь возникло добавочное поле +ΔВ, перпендикулярное В; тогда изменяется направление равновесия (новое направление В +ΔВ = В1) на частицу действует вращающий момент Т = [pмВ1].

Вместо того, чтобы приблизить pм к направлению В1, этот момент поворачивает ось частицы по нормали к pмВ1. В результате ось частицы начинает
описывать конус вокруг В1 (рисунок выше). Благодаря наличию трения конец вектора pм движется не по окружности, а по спирали и направление pм и В1 постепенно сближаются. Но если в момент наибольшего удаления вектора pм  от направления В изменить знак дополнительного поля ΔВ, то направление равновесия изменится, оказываясь равным В2 = В – ΔВ. Вектор pм   теперь будет описывать новый конус вокруг
нового направления равновесия.

Если изменение поля происходит именно с такой частотой, то удается сильно раскрутить частицы. Описанное явление и носит название гиромагнитного резонанса. Оно приводит к многим интересным эффектам, например к появлению пульсирующего магнитного момента в направлении перпендикулярном к плоскости В,
±ΔВ.

Резонансная частота ω и постоянное магнитное поле В связаны между собой уравнением (в Гауссовой системе):

Где e/m – отношение заряда электрона к его массе.

Оцените статью:
Оставить комментарий
Adblock
detector