Принципиальные схемы atx

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.

Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

…спустя год…

Просматривая даташит на микросхему KA7500 (аналог
TL-494) я обнаружил другое, более простое решение стабилизации тока БП.
Авторы предлагают использовать второй компаратор (выв.15,16). С учётом
того, что изначально этот компаратор смещён на 80 мВ, получается очень
удобное решение. Мною оно повторено дважды. В приводимой схеме выходное
напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей
будки. Для зарядки аккумуляторов естественно, можно использовать блок
без перемотки, но всё-таки лучше перемотать. И провод желательно взять
по толще, и виточков добавить. 

 

При расчёте количества витков вторичной обмотки
желательно, что бы на ХХ напряжение на выходе моста было больше
стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и,
соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно.
Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в
каком-то нет. И вообще это смещение маловато для стабильной работы.Поэтому я промакетировал подобную ОС на «спицах» и вот что получилось.

 

Для удобства макетирования я выбрал компаратор
LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот
теперь всё красиво. Компаратор срабатывает на 6,1 Ампера. Красный
луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор
0,15 Ом сделать легче и греться будет меньше, чем 0,3.Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни
разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 — 200
градусов и в перчатках аккуратненько расшатываю.

Зарядное из компьютерного блока питания

Первым делом, о чем хочется сообщить, это то, что многие элементы в блоке находятся под опасным для жизни напряжением, если есть сомнения в правильности ваших действий – не рискуйте, ни своим здоровьем, ни работоспособностью вашего БП.

Для переделки подойдет практически любой блок питания ATX

Но стоить обратить внимание на то, что есть более геморройные блоки, а есть менее. Для выбора «удобного» для переделки блока необходимо убедиться в том, что в блоке установлен ШИМ контроллер TL494 или его аналог (KA7500B)

По сути, этот ШИМ использовался практически на всех старых блоках AT и ATX мощностью 200 – 300 Вт.

Одни из самых распространенных и дешевых блоков являются блоки Codegen 300X и Codegen 300XA. Вот на них мы и остановимся более подробно. К стати, блоки питания Codegen 200, 250, 300 Вт имеют практически одинаковую схему и отличаются лишь номиналом некоторых элементов, они отлично подходит для переделки в зарядное.

Зарядное из компьютерного блока питания Codegen 300XA

Переделка такого блока будет включать в себя несколько шагов. Разбираем блок питания.

Выпаиваем все провода, которые использовались для подключения. Оставляем лишь черный провод (минус) и желтый провод (шина +12 В). Зеленый провод (Power ON) просто обрезаем и подключаем свободный конец на минус. С помощью замыкания зеленого провода на минус мы добьемся автоматического старта блока при включении в сеть.

Далее необходимо подключить вентилятор охлаждения на шину (– 12 В). В принципе, это можно и не делать, но будет один неприятный момент при подключении АКБ к зарядке. Вентилятор изначально питается с шины +12 В, при подключении АКБ к зарядке на шине + 12 В появляется напряжение и включается вентилятор. Некоторым это может очень не понравиться, так, что рекомендуем подключить красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).

Проверяем работоспособность блока. Блок должен запуститься автоматически, а на выходе должно быть напряжение 12В.

Перед всеми дальнейшими манипуляциями желательно найти схему блока или подобрать наиболее близкую. Ниже изображена схема Codegen 300XA.

Находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.

Выпаиваем его и измеряем сопротивление, оно составило 39 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 39 кОм.

Запускаем блок питания. На выходе напряжение должно быть около 12 В.

Последним шагом станет поднятие напряжения до 14,2 В с помощью регулировки подстроечного резистора.

Подстроечный резистор лучше всего брать многооборотный, это даст легкую и точную настройку выходного напряжения.

Зарядное из компьютерного блока питания Codegen 300X

Манипуляции, по сути, будут такими же, добавятся лишь пара дополнительных шагов.

Отключаем все провода от блока. Оставляем только черный (минус) и желтый (шина +12 В). Зеленый (Power ON) обрезаем и подключаем свободный конец на минус. Далее подключаем питания вентилятора охлаждения на шину (– 12 В). Красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).

Тестируем работу. На выходе напряжение 12 В.

На схеме Codegen 300X находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.

Далее выпаиваем его и измеряем сопротивление, у нашего блока оно составило 38 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 38 кОм.

Важно найти стабилитрон ZD1 и удалить его из платы. На схеме он зачеркнут

Если его не выпаять, мы не сможем поднять напряжение выше 13 В, т.к. блок уйдет в защиту.

Запускаем блок питания. На выходе напряжение должно быть почти 12 В.

Финишным этапом будет поднятие напряжения до 14,0 В с помощью регулировки подстроечного резистора. Выше 14,0 В напряжение не стоит подымать на этом БП без дальнейших изменений схемы, т.к. уже при напряжении 14,2 В будут наблюдаться проблемы с запуском блока. А 14,0 В это вполне достаточно для зарядки автомобильного АКБ.

Стоит отметить, что при неправильном подключении АКБ зарядное из блока питания ATX выходит из строя моментально, важно оснащать его хоть самыми простыми защитными схемами от переполюсовки на реле или полевику. Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда

Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда.

comments powered by HyperComments

Переделка блока питания с компьютера своими руками

При работе со средней нагрузкой потребляемый ток значительно меньше пускового. Усредненный ток пуска различных шуруповертов с рабочим напряжением 12В приблизительно равен 18А. Предположим, что максимальный ток не превысит 20А. Тогда, так как P=U×I, вас устроит блок питания мощностью от 240Вт с выходным током не менее 20А. Теперь, когда вы знаете, какой преобразователь подойдет для питания вашего «Шурика», остается только немного доработать его.

  • Пометьте выход +12В и «землю». Определить их можно даже без тестера. Общий провод имеет изоляцию черного цвета. Питание +12В – желтого.
  • Отпаяйте от платы БП выходные жгуты и удалите их вместе с разъемами. Оставьте только два провода – черный и зеленый.
  • Замкните оставленные провода между собой и заизолируйте соединение. Это нужно для имитации сигнала запуска БП с материнской платы.
  • К выходу +12В и к «земле» припаяйте 2 отрезка многожильного медного провода.
  • Выведите их из корпуса через отверстие для жгутов.
  • Сетевой кабель подключите к штатному гнезду блока питания.

Важно! Шуруповерт имеет низкое напряжение питания, поэтому необходимая мощность достигается за счет большого тока. Но потери в кабеле прямо пропорциональны величине электротока и сопротивлению проводов

Значит, чтобы мощность инструмента снижалась не очень заметно, выбирайте провода для его соединения с блоком питания как можно большого сечения. И не делайте их слишком длинными. Сечение лучше взять не меньше 3 мм2. А длина не должна превышать 1,5 м.

Зарядное устройство из блока питания на ШИМ 2003

Переделка такого блока будет осуществляться в два этапа. Первый этап – обман ШИМ 2003. Второй этап – установка напряжения необходимого для зарядки автомобильного АКБ 14,2 В.

Для начала необходимо немного разобраться с принципом работы ШИМ 2003. Информации по данной микросхеме в сети практически нет. Все, что удалось найти — это то, что при начальном включении БП микросхема на доли секунды запускает блок и мониторит выходное напряжение. Если есть отклонения в какую либо сторону хоть на одной из шин (+3,3 В; +5 В; +12 В) от эталонных напряжений, то блок уходит в «защиту», если напряжения в рамках нормы, тогда блок продолжает работать в нормальном режиме.

Перед переделкой блока необходимо изготовить небольшую отдельную плату, которую в дальнейшем подключим к ШИМ.

Плата состоит из стабилизатора 7812 и трех резисторов, которые образовывают делитель напряжения. Номинал резисторов необходимо подбирать, как можно более близко к номиналу указанному на схеме.

При подключении этой схемы к внешнему источнику с напряжением порядка 16 В важно убедиться, что резистивный делитель напряжения собран верно, и на нем присутствуют напряжения +3.3 В и + 5 В, 12 В – это выход из стабилизатора. Как, наверное, Вы уже догадались, с помощью этой платы мы эмулируем идеальные напряжения, которые мы подадим на соответствующие выводы ШИМ 2003

  • 3-я ножка +3,3 В;
  • 4-я ножка + 5 В;
  • 6-я ножка + 12 В.

Для удобства и наглядности мы нашли схему блока питания JNC 300W.

Далее мы начертили схему подключения нашего делителя, а также все дополнительные необходимые дальнейшие изменения.

Как видим изготовить зарядное устройство из блока питания на ШИМ 2003 не сложно, тут важно, не допустить ошибки

Делаем отверстие в радиаторе и крепим к нему нашу плату стабилизатора с делителем.

Питание для стабилизатора берем с конденсатора С 15, там есть напряжение дежурки 16-17 В.

Выпаиваем все провода, которые выходили с блока и оставляем лишь черный (минус) и желтый (+12). Зеленый провод замыкаем на минус (для автоматического старта блока). Питание вентилятора переключаем на шину – 12 В или запитываем его непосредственно от нашего стабилизатора 7812.

Далее отключаем ноги №3, 4 и 6 ШИМ 2003 и подключаем их согласно нарисованной схеме

Важно внимательно рассмотреть трассировку платы, некоторые дорожки, возможно, придется перерезать, а в некоторых местах бросить перемычки

На этом этапе можно включить блок проверить происходит ли запуск.

Напряжение на выходе должно быть 12В.

Важно. Если в момент пуска происходит пуск блока на пару секунд, затем блок останавливается необходимо проверить: правильно ли собран и подключен наш делитель, присутствуют ли на нем необходимые напряжения, не перерезали ли в ненужном месте дорожку на плате

Если все хорошо и блок питания завелся можно приступать к корректировке напряжения.

14 нога ШИМ 2003 отвечает за режим ее работы, она подключена к шине +5 В через резистор R62 и к шине +12 В через резистор R60, также на минус она посажена через несколько резисторов. Мы удаляем с платы R62 и R60. На место R60 нам нужно установить многооборотный подстроечный резистор порядка 100-200 кОм, настроенный на 60 кОм.

Резистор лучше всего брать многооборотный для точной и плавной подстройки.

После запуска блока мы можем наблюдать, что выходное напряжение уже изменилось. У нас оно составило 14,8 В.

Выходное напряжение для зарядки автомобильного АКБ можно откорректировать с помощью подстроечного резистора, выставив на выходе 14,2 В.

В общем, на этом нашу переделку можно считать оконченной, зарядное устройство из блока питания готово. Единственное, что еще можно посоветовать, это использовать защиту от переполюсовки т.к. при ошибочном подключении аккумулятора неверной полярностью блок моментально выйдет из строя.

comments powered by HyperComments

Переделка компьютерного блока в зарядное на ШИМ АТ2005В

Первым делом была отрыта схема GEMBIRD 350W. Схема практически идентична блоку, единственное — имеются небольшие отличия в нумерации компонентов и их номиналов.

Обман супервизора AT2005B

С чего стоит начать, так это с того, что ШИМ АТ2005В имеет встроенный супервизор, который мониторит напряжение на основных силовых шинах блока питания.

Первым делом необходимо сформировать эталонные напряжения с помощью отдельной схемы, которые нужно будет потом подать на соответствующие выводы ШИМ 2005.

Для справки. Напряжение с шины +12 В на ШИМ 2005 (pin5) подается через резистивный делитель, а не напрямую, как в 2003 или SG6105.

Напряжение, необходимые для обмана супервизора АТ2005В:

  • для pin3 (мониторит шину +3,3 В) напряжение должно быть от 2,18 до 3,8 В;
  • для pin4 (мониторит шину +5 В) напряжение должно быть от 3,3 до 5,8 В;
  • для pin5 (мониторит шину +12 В) напряжение должно быть от 2,6 до 4,41 В.

Собираем схему на отдельной плате, состоящую из трех резисторов.

Подключаем к ШИМ выходы платы pin15 (5 В) и 0. Сейчас подключаем параллельно обвязке ШИМ, ничего не выпаивая. По сути, просто подаем стабилизированное питание 5 В на плату с резисторами.

Затем освобождаем ножку №3 ШИМ 2005 и подключаем эту ногу к плате к соответствующему выходу pin3. Производим пробный запуск БП

Важно внимательно рассмотреть дорожки, идущие к ШИМ, при этом где нужно бросить перемычку

Если БП запустился, производим аналогичные процедуры с ножками 4 и 5.

Если все три выхода платы подключены и БП стартует нормально – ШИМ 2005 обманут и защита от повышенного или заниженного напряжения на выходе БП отключена.

Настраиваем 14,5 В на выходе блока

Ножка №2 ШИМ АТ2005В подключается к шине +5 В и к шине +12 В через резисторы. Необходимо найти тот, который подключается к шине +12 В и немного увеличить его сопротивление (по схеме это R44).

Находим на плате нужный резистор (на плате обозначен как R54) и измеряем его сопротивление (составило 32,7 кОм). Настраиваем подстроечный резистор на такое же сопротивление и впаиваем на место.

С помощью подстроечного резистора добиваемся на выходе 14,5 В.

На этом этапе переделка компьютерного блока в зарядное на ШИМ АТ2005В окончена, осталось избавиться от лишних проводов и вывести клеммы крокодилы для подключения АКБ.

ВАЖНО! Данные манипуляции актуальны с ШИМ 2005В в случае с AT2005A, 2005Z процедура переделки будет другой. Также необходимо учесть, что такой блок очень боится переполюсовки, при эксплуатации желательно использовать хоть самую простую защиту на реле или полевике

Также необходимо учесть, что такой блок очень боится переполюсовки, при эксплуатации желательно использовать хоть самую простую защиту на реле или полевике.

comments powered by HyperComments

Схемы блоков питания для ноутбуков.

EWAD70W_LD7552.png KM60-8M_UC3843.pngADP-36EH_DAP6A_DAS001.pngLSE0202A2090_L6561_NCP1203_TSM101.pngADP-30JH_DAP018B_TL431.pngADP-40PH_2PIN.jpgDelta-ADP-40MH-BDA-OUT-20V-2A.pdfPPP009H-DC359A_3842_358_431.pngNB-90B19-AAA.jpgPA-1121-04.jpgDelta_ADP-40MH_BDA.jpgLiteOn_LTA301P_Acer.jpgADP-90SB_BB_230512_v3.jpgDelta-ADP-90FB-EK-rev.01.pdfPA-1211-1.pdfLi-Shin-LSE0202A2090.pdfGEMBIRD-model-NPA-AC1.pdfADP-60DP-19V-3.16A.pdfDelta-ADP-40PH-BB-19V-2.1A.jpgAsus_SADP-65KB_B.jpgAsus_PA-1900-36_19V_4.74A.jpgAsus_ADP-90CD_DB.jpgPA-1211-1.pdfLiteOn-PA-1900-05.pdfLiteOn-PA-1121-04.pdf

Общие характеристики блока питания ATX:

   Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера

Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги: а) Входное высокое напряжение сначала выпрямляется и фильтруется. б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между высоковольтной и низковольтными частями схемы

 г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.Основными достоинствами таких источников являются: — Высокая мощность при небольших размерах — Высокий КПД    Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В. К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора. 

Переделка блока питания АТ в зарядное устройство

Блок питания АТ от устаревшего компьютера может годами пылиться на полке в шкафу, перед началом переделки необходимо удостовериться в его технической исправности и почистить от грязи и пыли:

  • он должен хорошо держать нагрузку порядка 6 А на шине 12 В;
  • в блоке не должно быть вздутых, а также со следами вытекания электролита конденсаторов или почерневших резисторов;
  • система вентиляции должна отлично работать;

Также при переделке необходимо помнить, что в БП присутствует высокое напряжение опасное для жизни.

Для наглядной переделки мы отрыли в закромах плату от такого АТ блока.


По сколку родного корпуса к ней не нашлось, мы ее установили в первый подходящий по размеру корпус и снабдили хорошим вентилятором.

Сам процесс переделки очень похож на переделку блока питания АТХ, которая уже у нас описывалась ранее. И так, ниже находится схема этого блока питания АТ.

Далее схема со всеми дальнейшими изменениями для переделки его в зарядное устройство.

Как видим со схемы, наш блок построен на ШИМ TL494. Для поднятия выходного напряжения до 14 В необходимо найти два резистора.

Первыйудалить с платыВторойзаменить на многооборотный подстроечный

TL494 распиновка.

Находим необходимые резисторы в блоке.

Удаляем их из платы.

Устанавливаем многооборотный подстроечный резистор (предварительно выставив на нем 20-22 кОм).

При включении блока питания напряжение на шине +12 В уже будет отличаться от исходного, у нас оно составило 14,7 В.

Подстроечным резистором мы можем откорректировать выходное напряжение до оптимальных 14,2 В для зарядки АКБ.

Переделка блока питания АТ в зарядное закончена, таким блоком уже можно пользоваться в качестве зарядного устройства.

Но, надо помнить, что все самодельные зарядные собранные с блока питания компьютера моментально выходят из строя при переполюсовке АКБ. Защита от переполюсовки на реле является самым простым и весьма эффективным способом защиты от такой случайности.

Блок питания ATX на ШИМ SG6105 – переделка в лабораторный

Недавно мы публиковали материалы по переходнику с SG6105 на TL494, с его помощью очень легко можно было заменить одну микросхему другой и избавиться от назойливых защит. Этот отдельный модуль устанавливался на штатное место SG6105 и позволял проводить минимальную корректировку основной платы блока.

При переделке блока на ШИМ SG6105 в лабораторный, изменений в основной плате будет немного больше, но обо всем по порядку.

Изменение в основной плате блока

Ниже приведена схема COLORSit 330U-FNM на ШИМ SG6105, плата этого блока точно совпадает со схемой.

Первым делом необходимо удалить часть компонентов, которые нам будут уже не нужны. В основном это касается силовых шин +5; +3,3; -12 В, элементов обвязки защит и служебных выводов SG6105.

Дополнительные изменения в плате касаются новых элементов, выделенных красными рамками с нумерацией изменений.

  1. Устанавливаем новые номиналы для резисторов обратной связи с шины +12 В. Это для R28 – 48 кОм, R23 – 12 кОм.
  2. Переключаем питание ШИМ на другую обмотку дежурки с напряжением 15-17 В, т.к. для питания TL494 нужно минимум 7 В. (т.е. R22 подключаем к диоду D12)
  3. Питание вентилятора также нужно брать с этой же обмотки дежурки, используя дополнительный стабилизатор LM7812.
  4. Устанавливаем токоизмерительный шунт, в качестве которого используем три резистора номиналом 0,1 Ом, мощностью 10 Вт. Минусовая клемма выхода блока будет теперь уже после шунта.
  5. Следует поставить новый выходной электролитический конденсатор с рабочим напряжением минимум 25 В, номиналом в 1000-2200 мкФ.
  6. Нагрузочный резистор R27 лучше заменить резистором с чуть большим сопротивлением в 1 кОм.
  7. Если в блоке используется маломощная диодная сборка по шине +12 В, параллельно ей желательно установить еще одну или заменить на более мощную.

Переходник с SG6105 на TL494 для регулировки тока

Схема переходника с SG6105 на TL494 для регулировки тока включает в себя: TL494 с необходимой обвязкой и две TL431. По сути, можно обойтись лишь одной TL431, которая используется для дежурки. Поскольку схемы блоков на SG6105 бывают разные нельзя заранее сказать, какая из TL431 используется дежуркой, а какая для шины 3,3 В, для универсальности решено было оставить обе.

16-я ножка TL494 подключается на минусовый выход после шунтов (обозначенная синей рамкой), место подключения вывода к 16 ножке тоже обозначено и указанно на схеме. R4 используется для регулировки напряжения, а R10 для регулировки тока. Расчет обвязки выполнен для выходного напряжения 0-17 В; 0-15 А. Печатку для переходника с регулировкой тока можно будет скачать в конце статьи.

Если токи в 15А не нужны, достаточно убрать один из токоизмерительных резисторов 0,1 Ом (использовать два вместо трех), при двух – максимальный рабочий ток будет около 10 А.

Вот таким получился наш переходник.

Сборка блока

Для установки переходника на место SG6105 нужно использовать панельку. После финишной сборки переходник желательной прочно зафиксировать в разъеме используя термо силикон или что-то другое.

Из-за больших размеров трех резисторов по 10 Вт их очень удобно крепить на радиатор, на радиатор также следует установить LM7812 т.к. при работе вентилятора она будет сильно греться.

Вот так выглядит блок после удаления лишних компонентов и готовый к установке переходника.

Подключаем наш переходник в панельку микросхемы SG6105.

Такой переходник должен подходить практически ко всем блокам питания на SG6105, но необходимо быть внимательным при удалении ненужных компонентов и внимательно вникнуть в отличия схем и нумерации деталей.

Тесты

Поскольку вольтамперметр с диапазоном на 20А еще не приехал, используем мультиметр в качестве амперметра и простенький цифровой вольтметр, который питается от линии, на которой меряет напряжение (из-за этого его показания и пропадают при напряжении ниже 3 В).

Немного слов о стабильности напряжения. Пульсации 0,1 В с периодом 10 миллисекунд на максимальном токе 15 А и выходном напряжении 17 В.

comments powered by HyperComments

На сладкое немного о выводе 4.

Это тоже вход компаратора, но с
задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что
конструктор микросхемы предусмотрел использовать его для регулировки
«мёртвого времени». Обычно в схемах АТХ-АТ его используют как «мягкий
пуск» и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.
Работает ОНО так. При включении БП
конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5
вольт, что наглухо закрывает выходные ключи микросхемы. Затем
конденсатор заряжается через резистор (выв4-земля) и на выводе 4
напряжение падает до нуля. Это приводит к медленному нарастанию
выходного напряжения до момента когда оно стабилизируется ОС по
напряжению. В нашем случае вывод 4 целесообразно попутно задействовать
для ограничения выходного тока. По схеме видно, что при увеличении тока в
нагрузку увеличивается падение напряжения на измерительных резисторах
(4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p
у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4
и так до режима стабилизации тока. На полной схеме цепь стабилизации
тока обведена красным фломастером. Вот так простенько удалось добиться и
стабильного тока зарядки и защиты от короткого замыкания на выходе. 
Кстати, на выходе советую ни каких
электролитических конденсаторов не ставить, тогда при «коротком» не
будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

Оцените статью:
Оставить комментарий