Что такое электронная нагрузка: общая информация, для чего они используются и какие бывают
Содержание
- 1 Схема
- 2 Особенности импульсного варианта ЭН
- 3 Идея
- 4 РадиоКот :: Простая электронная нагрузка для начинающих
- 5 Какие бывают электронные нагрузки
- 6 Нагрузки на базе IRGS4062DPBF
- 7 Схема регулируемой электронной нагрузки
- 8 Сборка и тестирование
- 9 Токовая электронная нагрузка
- 10 Импульсные устройства
- 11 Преимущества электронного эквивалента нагрузки
- 12 Подпишись на RSS!
Схема
ЭН собрана на популярных (благодаря большому количеству утилизированных компьютерных БП) компонентах. Схема ЭН содержит генератор с регулируемой частотой и шириной импульсов, термо-и-токовую защиту. Генератор выполнен на ШИМ TL494.
Регулировка частоты осуществляется переменным резистором R1; скважности — R2; термочувствительности — R4; ограничение тока — R14.
Выход генератора умощнен эмиттерным повторителем (VT1, VT2) для работы на емкости затворов полевых транзисторов числом от 4-х и более.
Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12…15В и током до 2А или от канала +12В проверяемого БП.
Выход ЭН (сток полевого транзистора) и соединяется с «+» проверяемого БП, общий провод ЭН — с общим проводом БП. Каждый из затворов полевых транзисторов (в случае их группового использования) должен быть соединен с выходом буферного каскада собственным резистором, нивелирующим разницу параметров затворов (емкость, пороговое напряжение) и обеспечивающим синхронную работу ключей.
На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый — индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор — (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным.
По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.
https://youtube.com/watch?v=DUT5EExdwqM
АРХИВ:Скачать
Особенности импульсного варианта ЭН
Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.
При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.
Идея
Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение — проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме.
Итак, что же представляет собой «классическая» (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это — электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.
Ток в импульсной ЭН будет зависеть от суммы параметров в число которых будет входить ширина импульса, минимальное сопротивление открытого канала выходного ключа и свойства проверяемого БП (емкость конденсаторов, индуктивность дросселей БП, выходное напряжение).
При открытом ключе ЭН образует кратковременное короткое замыкание, при котором конденсаторы испытуемого БП разряжаются, а дроссели (если они содержатся в конструктиве БП) стремяться к насыщению. Классического КЗ, однако, не происходит, т.к. ширина импульса ограничена во времени микросекундными величинами, определяющими величину разрядного тока конденсаторов БП.
В то же время проверка импульсной ЭН является более экстремальной для проверяемого БП. Зато и «подводных камней» при такой проверке выявляется больше, вплоть до качества питающих проводников, подводимых к питающему устройству. Так, при подключении импульсной ЭН к 12-тивольтовому БП соединительными медными проводами диаметром жилы 0,8мм и токе нагрузки 5А, осциллограмма на ЭН выявила пульсации, представляющие собой последовательность прямоугольных импульсов размахом до 2В и остроконечными выбросами с амплитудой, равной напряжению питания. На клеммах самого БП пульсации от ЭН практически отсутствовали. На самой ЭН пульсации были сведены к минимуму (менее 50мВ) при помощи увеличения количества жил каждого питающих ЭН проводников — до 6. В «двухжильном» варианте минимума пульсаций, сопоставимого с «шестижильным», удалось достигнуть установкой дополнительного электролитического конденсатора емкостью 4700мФ в точках соединения питающих проводов с нагрузкой. Так что, при построении БП, импульсная ЭН очень даже может пригодиться.
РадиоКот :: Простая электронная нагрузка для начинающих
Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Аналоговые схемы >Измерения >
Теги статьи: | Добавить тег |
- Простая электронная нагрузка для начинающих
- Эта статья является предисловием к более сложному устройству и предназначена для тех, кто постоянно тасует мощные резисторы и лампочки, используемые как нагрузка, а знаниями (опытом, решимостью) для сборки сложных схем еще не обладает.
- Начиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):
Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htm
На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.
К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток.
Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения.
Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.
Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.
Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.
Вспомогательными элементами схемы являются:
- диод VD1 защищающий схему от неправильной подачи питания;
- интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
- светодиод HL1, индицирующий подачу питания;
- светодиод HL2, индицирующий опасно высокое входное напряжение.
Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.
Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):
Рисунок платы — в прилагаемом файле, зеркалить не нужно.
Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей.
Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X).
Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.
Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.
- Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.
- А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.
- Файлы: Схема и плата в формате OrCAD 9Рисунок дорожек для ЛУТ
- Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Какие бывают электронные нагрузки
Большинство серий электронных нагрузок предназначены для тестирования источников питания постоянного тока (аккумуляторов, блоков питания, солнечных батарей и др.), типичные примеры: серия ITECH IT8500+ и серия ITECH IT8800. Для тестирования источников питания переменного тока (инверторов, источников бесперебойного питания, трансформаторов и др.) выпускаются специализированные AC/DC электронные нагрузки переменного и постоянного тока, типичный пример: серия ITECH IT8615.
Конструктивно серийные электронные нагрузки изготавливаются в приборных корпусах. Размер и масса корпуса напрямую зависят от максимальной мощности, которую может рассеивать нагрузка. Самые маломощные модели могут рассеивать около 100 Вт и помещаются в небольших компактных корпусах, как например модель IT8211 рассчитанная на 150 Вт.
Типичная маломощная электронная нагрузка (модель ITECH IT8211, максимальная мощность 150 Вт).
Более серьёзные модели, как например пятикиловаттная нагрузка ITECH IT8818B, могут монтироваться в промышленную стойку и весят 40 и более килограмм.
Типичная мощная электронная нагрузка (модель ITECH IT8818B, максимальная мощность 5 кВт).
Также выпускаются модели, которые могут рассеивать десятки и даже сотни киловатт. Чтобы увидеть варианты конструктивного исполнения электронных нагрузок разной мощности, посмотрите серию ITECH IT8800.
Иногда, для удешевления, вместо электронной нагрузки используют реостат (мощный переменный резистор). Использование реостата при тестировании силовых устройств связано с такими ограничениями:
— отсутствие режима постоянного тока потребления;
— отсутствие режима постоянной мощности;
— отсутствие режима стабилизации напряжения;
— отсутствие режима изменения состояния по списку заданных значений;
— отсутствие автоматизации работы;
— значительная индуктивность реостата;
— необходимость использовать дополнительный вольтметр и амперметр.
Поэтому вместо устаревших методов тестирования, эффективнее и в конечном итоге дешевле применять современную контрольно-измерительную аппаратуру, специально разработанную под конкретную задачу.
Использование хорошей электронной нагрузки позволяет существенно упростить и ускорить процесс тестирования любых источников электропитания, а также сделать этот процесс безопасным и эффективным.
Нагрузки на базе IRGS4062DPBF
Делается электронная нагрузка своими руками на базе этого транзистора довольно просто. Стандартная схема модели включает в себя два конденсаторных блока и один расширитель. Сразу стоит отметить, что модели этого класса хорошо подойдут для блоков питания на 10 А. Параметр напряжение у нагрузок равняется 200 Вт. Фильтры для устройств подбираются низкой частоты. Они способны работать при больших нагрузках.
В первую очередь при сборке устанавливается тиристор, а компаратор можно использовать разного типа. Непосредственно транзистор устанавливается при помощи паяльника. Если проводимость у него превышает 5 мк, то стоит устанавливать дипольный фильтр вначале цепи. Специалисты говорят о том, что электронная нагрузка на транзисторе IRGS4062DPBF может делаться с переходными компараторами. Однако у них высокий коэффициент рассеивания.
Также стоит отметить, что модели этой серии подходят только для цепей постоянного тока. Допустимый параметр перегрузки приборов равняется 5 А. Если рассматривать устройства на импульсных компараторах, то у них имеется масса преимуществ. В первую очередь в глаза бросается высокая частота. При этом сопротивление приборы показывают на уровне 50 Ом.
У них нет проблем с проводимостью и резкими скачками напряжения. Стабилизаторы разрешается применять разных типов. Однако они должны работать в цепи постоянного тока. Еще на рынке представлены модификации без конденсаторов. Коэффициент рассеивания у них равняется примерно 55%. Для устройств данного класса это очень мало.
Схема регулируемой электронной нагрузки
Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.
Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. Потенциометр R2 предназначен для грубой подстройки, а R1 для точной.
Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.
Электронная нагрузка 60ВтНапряжение: до 30В, ток: 0…9.9А, ЖК-дисплей…
Подбор транзистора
В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки. Параметры, которые должны заинтересовать нас — большой Ik (ток коллектора) и Ptot (рассеиваемая мощность). Ток коллектора — это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность — это мощность, которую транзистор может отвести в виде тепла.
В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.
Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.
Транзисторы BC327 и BC337 — повторители для MOSFET транзисторов, предназначены для обеспечения быстрой перезарядки затвора. Конденсатор С1 предназначен для подавления возбуждений (при тестировании импульсных БП).
Подбор резистора
При нагрузке 20А, резистор R5 должен иметь мощность 40 Вт и хорошо охлажден (20 A * 0,1 Ом = 2 В; 2 В * 20 A = 40 Вт). Лучше использовать резистор в металлическом корпусе с возможностью установки на радиатор. Можно также соединить параллельно несколько резисторов так, чтобы получить соответствующую мощность и сопротивление.
Напряжение питания схемы – нестабилизированное 15В, хотя оно зависит от параметра Vgs (напряжение затвора) нашего транзистора, при котором он полностью откроется. Как правило, не нужно больше 10В. Поскольку при более высоком напряжении стабилизатора IC2 должен быть оснащен радиатором.
Можно использовать транзисторы (VT3 и VT4) с логическим уровнем управления, то есть такой, который управляется напряжением TTL. Тогда напряжение питания в 7В будет достаточно. На этом заканчивается описание основной части электронной нагрузки.
При желании в схему можно добавить амперметр, но это не обязательно. Тем не менее, дополнив схему амперметром мы освободим свой мультиметр, который будет необходим для настройки. Измерительный блок выполнен на популярной микросхеме ICL7107 и четырех 7-сегментных светодиодных индикаторов по классической схеме.
Настройка
Перед использованием нужно откалибровать показания нашего амперметра. Для этого подключаем электронную нагрузку к блоку питания и в разрыв цепи включаем мультиметр (диапазон 10А). После прогрева схемы, потенциометром R9 устанавливаем такое же показание, как на мультиметре.
Другие области применения устройства
Регулируемая электронная нагрузка подойдет не только для тестирования блоков питания. Устройство также может быть использовано для тестирования батарей, аккумуляторов. С помощью его удобно измерять и рассчитывать емкость за счет стабилизации тока, который всегда будет поддерживаться на заданном уровне.
Сборка и тестирование
На плате устанавливаются SMD-компоненты. Поэтому вы должны использовать все свои навыки по пайке. Остальные детали для установки в отверстия очень легко паять.
Устройство должно заработать сразу же после финальной сборки. Многооборотный переменный резистор позволяет пользователю точно и правильно отрегулировать ток. Клеммная колодка J2 очень полезный компонент, поскольку является колодкой, соединяемой нажатием. Поэтому нет необходимости в использовании крепежных винтов. Выключатель вкл/выкл SW1 удобно включает и выключает источник питания электрической нагрузки.
На фотографии ниже показан пример использования данной схемы для разряда батареи при токе 1.2A во время измерения фактической емкости перед ее использованием.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
U1 | Линейный регулятор | LM78L15 | 1 | Поиск в магазине Отрон | В блокнот | |
U2 | Операционный усилитель | LM324 | 1 | Поиск в магазине Отрон | В блокнот | |
U3 | Микросхема | AD780 | 1 | Поиск в магазине Отрон | В блокнот | |
Q1 | MOSFET-транзистор | IRF3710 | 1 | Поиск в магазине Отрон | В блокнот | |
С1, С3, С10 | Конденсатор | 10 мкФ | 3 | С10 25 Вольт | Поиск в магазине Отрон | В блокнот |
С2, С4, С6 | Конденсатор | 0.1 мкФ | 3 | Поиск в магазине Отрон | В блокнот | |
С5, С8 | Конденсатор | 0.01 мкФ | 2 | С8 50 Вольт | Поиск в магазине Отрон | В блокнот |
С7 | Конденсатор | 0.022 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
С9 | Конденсатор | 1 мкФ 25 В | 1 | Поиск в магазине Отрон | В блокнот | |
VR1 | Переменный резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R1, R2, R6-R11 | Резистор | 2 кОм | 8 | Поиск в магазине Отрон | В блокнот | |
R3 | Резистор | 150 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
R4 | Резистор | 39 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R5 | Резистор | 0.1 Ом | 1 | 5 Вт | Поиск в магазине Отрон | В блокнот |
LD1 | Светодиод | 1 | Поиск в магазине Отрон | В блокнот | ||
М1 | Амперметр | 1 | Поиск в магазине Отрон | В блокнот | ||
J1 | Разьем для подключения питания | 1 | Поиск в магазине Отрон | В блокнот | ||
J2 | Разьем для силового подключения | 1 | Поиск в магазине Отрон | В блокнот | ||
Добавить все |
Токовая электронная нагрузка
Электронная нагрузка вещь очень полезная, предназначена для теста источников питания, в том числе и аккумуляторов.
Например если имеется сомнительный блок питания и нужно выяснить его выходные параметры первым делом нужно его нагрузить, при этом каждый блок питания требует индивидуального расчета нагрузочного резистора и чем мощнее блок, тем мощнее должен быть нагрузочный резистор.
Электронная нагрузка выполняет ту же функцию, только является универсальным вариантом для любых источников питания.
Наш вариант очень простой и построен всего на одном операционном усилителе LM358, но задействован всего один элемент ОУ.
Мощность рассеивается на транзисторах, поэтому чем больше их количество и ток коллектора каждого транзистора, тем больше может быть общая мощность рассеиваемая электронной нагрузкой.
В теории общий ток может доходить до 40 Ампер с учетом тока коллектора кт827, но в деле естественно все будет зависеть от напряжения тестируемого источника питания, если мощность превышает 250 ватт, транзисторам придет кирдык, уделите этому моменту должное внимание.
Мощные резисторы в этой схеме тоже рассеивают некоторую мощность (и не малую). Эмиттерные резисторы предназначены для выравнивания тока через транзисторы, мощный низкоомный шунт R12 служит датчиком тока, на нем будет рассеиваться колоссальная мощность, поэтому этот резистор подбираем с мощностью около 40 ватт.
Принцип работы довольно прост.
При подключении нагрузки образуется падение напряжения на шунте R12 и нарушается баланс напряжений на входах операционного усилителя, последний будет стараться уравновесить это напряжение за счет изменения выходного напряжения, уменьшая или увеличивая его. Тем самым измениться напряжение на базах составных транзисторов, в следствии чего изменится и ток проходящий по ключам.
Переменными резисторами мы можем искусственным образом изменить напряжение на неинвертирующем входе ОУ, этим управляем током протекающий по транзисторам.
Трансформатор в схеме нужен только для питания операционного усилителя и блока индикаторов, поэтому он нужен маломощный. Вторичное напряжение трансформатора от 9 до 15 Вольт, все ровно потом это напряжение будет стабилизировано до уровня 12 Вольт.
Нынче КТ827 очень дороги, но уверяю, они являются наилучшим решением в этой схеме, знаю что появятся вопросы на счет внедрения полевых транзисторов и должен сказать, что пробовал и с ними. Проблема в том, что при больших токах полевики тупо коротят, я думаю в случае их использования не помешает отдельное управление.
А так можно использовать любые составные ключи, в том числе и кт829, естественно нужно учитывать, что ток этих транзисторов в несколько раз ниже, чем ток коллектора КТ827.
Кнопкой S1 меняем чувствительность ОУ, этим можем переключить нагрузку на более точных измерений малых токов.
Свою конструкцию я дополнил ваттметром, который имеет функцию измерения емкости и в итоге получил электронную нагрузку с функцией разряда аккумуляторов с целью выявления их емкости, притом система может разряжать аккумуляторы большим током (лично тестировал на токах до 20 Ампер, никаких нареканий). Монтаж простенький, корпус позаимствован у лабораторного источника питания PS-1502.
Каждый транзистор установлен на свой радиатор, вся система дополнена активным охлаждение, притом имеется простенькая схема регулировки оборотов кулера.
В архиве находится печатная плата. А с вами был Ака Касьян, удачи в творчестве, до новых встреч!
Архив
Импульсные устройства
Как делается импульсная электронная нагрузка? В первую очередь для сборки эксперты рекомендуют подобрать хороший тиристор. При этом модулятор подходит только на две фазы. Специалисты говорят о том, что расширитель должен работать попеременно. Рабочая частота у него обязана составлять примерно 4000 кГц. Трансивер в нагрузку устанавливается через модулятор. После пайки конденсаторов стоит заняться усилителем.
Для стабильной работы нагрузки потребуется три фильтра канальной направленности. Для проверки прибора применяется тестер. Сопротивление должно составлять примерно 55 Ом. При средней загруженности самодельная электронная нагрузка выдает номинальное напряжение в районе 200 Вт. Для поднятия чувствительности применяются компараторы. При замыканиях системы стоит проверять цепь от конденсатора. Если сопротивление на контактах занижено, значит, трансивер нужно менять на емкостный аналог. Многие специалисты указывают на возможность использования волновых фильтров, у которых хорошая проводимость. Регуляторы для этих целей применяются на триоде.
Преимущества электронного эквивалента нагрузки
Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?
Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей «лаборатории» электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания — обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).
Кроме того, «действия» электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств — не в этой статье, и, быть может, от другого автора. А пока, — лишь о еще одной разновидности электронной нагрузки — импульсной.
Подпишись на RSS!
Подпишись на RSS и получай обновления блога!
Получать обновления по электронной почте:
-
-
Программа взаимодействия INA226 с микроконтроллером PIC
29 июля 2020 -
Миллиомметр цифровой на базе модулей ADS1115 и TM1637
22 июля 2020 -
Транзисторный ключ с ограничением тока
3 июня 2020 -
Зарядное для аккумуляторов шуруповерта на базе XL4015
5 апреля 2020 -
Зарядное для авто со стабилизацией тока на L200
19 марта 2020
-
Программа взаимодействия INA226 с микроконтроллером PIC
-
- Зарядное устройство для автомобильных аккумуляторов — 237 465 просмотров
- Стабилизатор тока на LM317 — 173 624 просмотров
- Стабилизатор напряжения на КР142ЕН12А — 124 990 просмотров
- Реверсирование электродвигателей — 101 809 просмотров
- Зарядное для аккумуляторов шуруповерта — 98 488 просмотров
- Карта сайта — 96 137 просмотров
- Зарядное для шуруповерта — 88 477 просмотров
- Самодельный сварочный аппарат — 87 868 просмотров
- Схема транзистора КТ827 — 82 524 просмотров
- Регулируемый стабилизатор тока — 81 511 просмотров
-
- DC-DC (4)
- Автомат откачки воды из дренажного колодца (5)
- Автоматика (34)
- Автомобиль (3)
- Антенны (2)
- Ассемблер для PIC16 (3)
- Блоки питания (30)
- Бурение скважин (6)
- Быт (11)
- Генераторы (1)
- Генераторы сигналов (8)
- Датчики (4)
- Двигатели (7)
- Для сада-огорода (11)
- Зарядные (17)
- Защита радиоаппаратуры (8)
- Зимний водопровод для бани (2)
- Измерения (35)
- Импульсные блоки питания (2)
- Индикаторы (6)
- Индикация (10)
- Как говаривал мой дед … (1)
- Коммутаторы (6)
- Логические схемы (1)
- Обратная связь (1)
- Освещение (3)
- Программирование для начинающих (17)
- Программы (1)
- Работы посетителей (7)
- Радиопередатчики (2)
- Радиостанции (1)
- Регуляторы (5)
- Ремонт (1)
- Самоделки (12)
- Самодельная мобильная пилорама (3)
- Самодельный водопровод (7)
- Самостоятельные расчеты (37)
- Сварка (1)
- Сигнализаторы (5)
- Справочник (13)
- Стабилизаторы (16)
- Строительство (2)
- Таймеры (4)
- Термометры, термостаты (27)
- Технологии (21)
- УНЧ (2)
- Формирователи сигналов (1)
- Электричество (4)
- Это пригодится (12)
-
Архивы
Выберите месяц Июль 2020 (2) Июнь 2020 (1) Апрель 2020 (1) Март 2020 (3) Февраль 2020 (2) Декабрь 2019 (2) Октябрь 2019 (3) Сентябрь 2019 (3) Август 2019 (4) Июнь 2019 (4) Февраль 2019 (2) Январь 2019 (2) Декабрь 2018 (2) Ноябрь 2018 (2) Октябрь 2018 (3) Сентябрь 2018 (2) Август 2018 (3) Июль 2018 (2) Апрель 2018 (2) Март 2018 (1) Февраль 2018 (2) Январь 2018 (1) Декабрь 2017 (2) Ноябрь 2017 (2) Октябрь 2017 (2) Сентябрь 2017 (4) Август 2017 (5) Июль 2017 (1) Июнь 2017 (3) Май 2017 (1) Апрель 2017 (6) Февраль 2017 (2) Январь 2017 (2) Декабрь 2016 (3) Октябрь 2016 (1) Сентябрь 2016 (3) Август 2016 (1) Июль 2016 (9) Июнь 2016 (3) Апрель 2016 (5) Март 2016 (1) Февраль 2016 (3) Январь 2016 (3) Декабрь 2015 (3) Ноябрь 2015 (4) Октябрь 2015 (6) Сентябрь 2015 (5) Август 2015 (1) Июль 2015 (1) Июнь 2015 (3) Май 2015 (3) Апрель 2015 (3) Март 2015 (2) Январь 2015 (4) Декабрь 2014 (9) Ноябрь 2014 (4) Октябрь 2014 (4) Сентябрь 2014 (7) Август 2014 (3) Июль 2014 (2) Июнь 2014 (6) Май 2014 (4) Апрель 2014 (2) Март 2014 (2) Февраль 2014 (5) Январь 2014 (4) Декабрь 2013 (7) Ноябрь 2013 (6) Октябрь 2013 (7) Сентябрь 2013 (8) Август 2013 (2) Июль 2013 (1) Июнь 2013 (2) Май 2013 (4) Апрель 2013 (7) Март 2013 (7) Февраль 2013 (7) Январь 2013 (11) Декабрь 2012 (7) Ноябрь 2012 (5) Октябрь 2012 (2) Сентябрь 2012 (10) Август 2012 (14) Июль 2012 (5) Июнь 2012 (21) Май 2012 (13) Апрель 2012 (4) Февраль 2012 (6) Январь 2012 (6) Декабрь 2011 (2) Ноябрь 2011 (9) Октябрь 2011 (14) Сентябрь 2011 (22) Август 2011 (1) Июль 2011 (5)