Четыре вида источников питания электрической дуги при сварке

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

Основные функции вторичных источников:

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

В его конструкцию последовательно входят:

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

Достоинства трансформаторных ИВП:

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.

Недостатки:

  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

Он содержит:

выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
частотный фильтр (в блоках без гальванической развязки);
трансформатор (в блоках с гальванической развязкой от сети).

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера. Достоинства импульсных источников питания:

Достоинства импульсных источников питания:

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.

Недостатки:

  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

Импульсные источники питания

Импульсный источник питания («импульсник») – это попытка реализовать преимущества как нестабилизированной, так и линейной стабилизированной конструкций источников питания (небольшой, эффективный и дешевый, но при этом с «чистым», стабильным выходным напряжением). Импульсные источники питания работают по принципу выпрямления входного переменного напряжения в постоянное напряжение, повторного преобразования его в высокочастотное прямоугольное переменное напряжение с помощью транзисторов, работающих как ключи (открыт/закрыт), затем понижения или повышения этого переменного напряжения с помощью небольшого трансформатора, а затем выпрямления выходного переменного напряжения трансформатора в постоянное напряжение и фильтрации до конечного выходного напряжения

Стабилизация напряжения достигается путем изменения скважности («коэффициента заполнения») преобразования постоянного напряжения в переменное на первичной обмотке трансформатора. В дополнение к меньшему весу трансформатора из-за меньшего сердечника, «ипульсники» имеют еще одно огромное преимущество по сравнению с предыдущими двумя конструкциями: этот тип источника питания может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в мире; эти источники питания называются «универсальными»

Недостатком импульсных источников питания является то, что они являются более сложными, и из-за своего принципа действия они имеют тенденцию генерировать много высокочастотного «шума» на линии питания. Большинство «импульсников» также имеет на выходе значительные пульсации напряжения. У более дешевых типов эти шум и пульсации могут быть такими же плохими, как и у нестабилизированного источника питания; такие низкобюджетные «импульсники» не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение и обладают возможностями «универсального» входа.

На выходе дорогих импульсных источников питания пульсаций нет, а шум почти такой же низкий, как у некоторых линейных стабилизаторов; эти «импульсники», как правило, стоят также дорого, как и источники питания с линейными стабилизаторами. Причиной использования дорогого «импульсника» вместо хорошего источника с линейным стабилизатором является необходимость универсальной совместимости с системами электроснабжения или высокая эффективность. Высокая эффективность, малый вес и малые размеры – вот причины, по которым импульсные источники питания практически повсеместно используются для питания цифровых компьютерных схем.

Примечания

Комментарии
  1. Однако в мощных трансформаторных БП возникают импульсные помехи из-за того, что ток, протекающий через (и вторичную обмотку трасформатора) имеет форму коротких импульсов, потому что диод открыт не весь полупериод, а короткое время вблизи максимума синусоиды, когда мгновенное значение переменного напряжения на вторичной обмотке превышает постоянное напряжение на фильтрующей ёмкости).
Источники
  1. Вторичный источник электропитания//Силовая электроника: краткий энциклопедический словарь терминов и определений —М.:Издательский дом МЭИ, 2008
  2. Здесь имеется в виду средняя индукция в контуре, охватывающем виток. В однородном магнитном поле, вектор индукции которого перпендикулярен плоскости витка — просто величина индукции.
  3. ↑ .
  4. .

Выпрямитель

Преобразует переменный ток промышленной частоты в постоянный, необходимый для сварки.

Выпрямители бывают однофазные и трехфазные, стационарные или мобильные. Иметь возможность изменять вольт-амперную характеристику на жёсткую или падающую, а также полярность при сварке.

Плавное регулирование сварочного тока осуществляется блоком управления, а ступенчатое за счёт переключения обмоток.

Массовое применение их на производстве говорит о их универсальности и производительности. Высокое КПД и возможность применения при сварки различных металлов делает их одними из популярнейших источников питания.

ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОПИТАНИЯ

Большая категория устройств нуждается в непрерывной подаче электроэнергии вне зависимости от внешних условий. Это могут быть как вычислительная техника (серверы, устройства хранения данных), так и целые производства с непрерывным циклом. Перебои питания в таких случаях недопустимы.

Для обеспечения постоянной подачи питающего напряжения разработаны устройства бесперебойного питания. В широком смысле источником бесперебойного питания (ИБП) может служить резервная линия электропередач или автономная электростанция.

Сейчас этим термином принято именовать устройства вторичного электропитания, которые предназначены для обеспечения работоспособности подключенной аппаратуры при кратковременных перебоях электроэнергии питающей сети.

Как правило, источники бесперебойного питания также выполняют функцию защиты от помех и скачков напряжения. По принципу действия их можно разделить на несколько категорий:

  • off-line;
  • line-interactive;
  • online.

Наиболее простую конструкцию имеют off-line

блоки электропитания. В нормальных условиях питание устройств осуществляется напрямую от первичного источника.

В случае пропадания напряжения или его выхода за допустимые пределы источник автоматически переключается на питание от встроенного аккумулятора, напряжение которого преобразуется при помощи инвертора.

Подобные устройства имеют в своем составе пассивные фильтры, препятствующие прохождению помех и схему слежения за параметрами входного напряжения. Несомненное достоинство off-line ИБП – простота конструкции, низкая стоимость и высокий КПД.

Следующий тип «бесперебойников» — line-interactive

, работает по тому же принципу, но имеет встроенный ступенчатый стабилизатор на основе автотрансформатора.

Такой блок дополнительно стабилизирует входное напряжение и в большинстве случаев позволяет не переключаться на питание от аккумулятора, который необходим только в случаях неспособности автотрансформатора справиться со стабилизацией (значительное превышение или понижение входного напряжения, его полное пропадание).

Основные недостатки перечисленных устройств:

  • требуется определенное время на переключение в режим работы от аккумулятора;
  • невозможность коррекции частоты сети;
  • несинусоидальное напряжение на выходе при работе от аккумулятора.

Первый недостаток может вызвать сбои в работе подключенных устройств при переключениях. Второй более существенен и не позволяет подключать устройства, требующие для питания синусоидального напряжения, а это асинхронные электродвигатели и бытовая техника, имеющая их в составе, например, отопительные котлы.

Только электроприемники, работа которых основана импульсных блоках питания, то есть не чувствительные к форме входного напряжения, могут нормально функционировать от подобных ИБП. К таким потребителям относятся устройства вычислительной техники, где off-line ИБП получили наибольшее распространение.

Наиболее высокое качество обеспечивают online

устройства. Работают они по принципу двойного преобразования. Входное напряжение сети сначала преобразуется в постоянное, а затем, при помощи инвертора, обратно в переменное.

Самое главное, что время переключения на питание от внешнего аккумулятора здесь отсутствует полностью, поскольку он постоянно подключен в цепь и при нормальных условиях работы находится в буферном режиме.

Поскольку выходное напряжение получается в результате преобразования постоянного, то имеется возможность коррекции его частоты и уровня в необходимых пределах.

Только самые дешевые устройства имеют на выходе напряжение с низким качеством. В основном большинство ИБП двойного преобразования выдают потребителям чистое синусоидальное напряжение, что делает такие приборы пригодными для питания большинства устройств.

Существенный недостаток online преобразователя – его высокая стоимость.

Все перечисленные устройства предназначены для кратковременной работы от внутреннего аккумулятора. Так происходит потому, что аккумуляторы имеют низкое значение ЭДС и при преобразовании к уровню входного напряжения от аккумулятора требуется отдать довольно значительный ток.

Аккумуляторы больших емкостей имеют значительные габариты и массу, а также требуют большое количество времени на подзарядку.

Таким образом, ИБП служат в основном для того, чтобы корректно и безопасно отключить устройства при пропадании напряжения сети.

ВИДЫ И ТИПЫ БЛОКОВ ПИТАНИЯ

В первую очередь классификация источников питания осуществляется по принципу действия. Основных вариантов здесь два:

  • трансформаторный (линейный);
  • импульсный (инверторный).

Трансформаторный блок состоит из понижающего трансформатора и выпрямителя, преобразующего переменный ток в постоянный. Далее устанавливается фильтр (конденсатор), сглаживающий пульсации и прочие элементы (стабилизатор выходных параметров, защита от коротких замыканий, фильтр высокочастотных (ВЧ) помех).

Преимущества трансформаторного блока питания:

  • высокая надежность;
  • ремонтопригодность;
  • простота конструкции;
  • минимальный уровень помех или их отсутствие;
  • низкая цена.

Недостатки — большой вес, крупные габариты и небольшой КПД.

Импульсный блок питания — инверторная система, в которой происходит преобразование переменного напряжения в постоянное, после чего генерируются высокочастотные импульсы, которые проходят ряд дальнейших преобразований (подробнее здесь). В устройстве с гальванической развязкой импульсы передаются к трансформатору, а при отсутствии таковой — напрямую к НЧ фильтру на выходе устройства.

Благодаря формированию ВЧ сигналов, в импульсных блоках питания применяются малогабаритные трансформаторы, что позволяет уменьшить размеры и вес устройства. Для стабилизации напряжения используется отрицательная обратная связь, благодаря которой на выходе поддерживается постоянный уровень напряжения, не зависящий от величины нагрузки.

Достоинства импульсного блока питания:

  • компактность;
  • небольшой вес;
  • доступная цена и высокий КПД (до 98%).

Кроме того, следует отметить наличие дополнительных защит, обеспечивающих безопасность применения устройства. В таких БП часто предусмотрена защита от короткого замыкания (КЗ) и выхода из строя при отсутствии нагрузки.

Минусы — работа большей составляющей схемы без гальванической развязки, что усложняет ремонт. Кроме того, устройство является источником помех высокой частоты и имеет ограничение на нижний предел нагрузки. Если мощность последней меньше допустимо параметра, агрегат не запустится.

Инвертор — популярное среди автовладельцев устройство, способное преобразовывать постоянное U 12/24 Вольта в переменное 220 Вольт. Инверторные БП питаются от автомобильного аккумулятора U. Применяя устройств, стоит учесть, что оно подходит для электроприемников, не требующих идеальной синусоидальной формы сигнала. Кроме того, стоит учитывать мощность подключаемых приборов.

Преимущества:

  • небольшие габариты и вес;
  • наличие защиты от скачков напряжения;
  • простота и удобство применения.

Недостатки — относительно высокая стоимость, а также небольшая надежность микропроцессорной управляющей платы.

Стабилизированные блоки питания — устройства, дополненные, как уже говорилось, стабилизатором, обеспечивающим постоянство напряжения на выходе устройства.

Бесперебойный (резервный) блок питания — источник, который включается в работу при кратковременном отключении электросети.

Некоторые из них имеют дополнительную защиту (например, от помех в сети). Такие блоки питания используются в системах с повышенными требованиями к надежности электроснабжения, например, видеонаблюдения или сигнализации.

Бесперебойные источники бывают резервными и интерактивными. Особенность вторых в наличии на входе стабилизатора напряжения, обеспечивающего ступенчатую регулировку.

Генераторные установки с 2- или 4-тактным бензиновым двигателем

  • 2-тактные двигатели, как правило, ставятся только на самые маломощные и компактные генераторные установки (наработка на отказ не более 500 часов);
  • 4-тактные бензиновые двигатели ставятся на более серьезные станции, но не более 15 кВА (мощнее бензиновых двигателей нет). Наработка на отказ от 1000 до 4000 часов. Основные производители — американская компания Briggs&Stratton; и японская Honda.

Генераторные установки с 4-тактным дизельным двигателем.

Дизельные генераторы с воздушным охлаждением занимают промежуточное положение между бензиновыми двигателями и дизельными с жидкостным охлаждением. Дизельные генераторные установки с воздушным охлаждением до 6 кВА мало чем отличаются от своих бензиновых собратьев, хотя они обладают большим ресурсом и более надежны. Наработка на отказ более 4000 часов. Основной производитель — японская компания Yanmar.

Более мощные дизельные двигатели с воздушным охлаждением до 20 кВА капризны к качеству топлива, достаточно шумные и громоздкие. Так что в этом случае лучше искать альтернативу среди дизельных двигателей с жидкостным охлаждением. Основной производитель немецкая фирма Hatz.

Дизельные двигатели с жидкостным охлаждением наиболее надежны и долговечны. Наработка на отказ до 20 000 часов. Они относятся к установкам промышленного класса.

Самые приемлемые с точки зрения оснащенности различными опциями. Основные производители от 6 до 20 кВА:

  1. Mitsubishi, от 20 до 275 — John Deere, от 200 до 500 кВА
  2. Volvo и Perkins, более 500 кВА — MTU.

Теперь подведем итог этому варианту решения. При частых и длительных отключениях электроэнергии или при отсутствии внешней сети выбор очевиден. Однако если вернуться к третьему условию задачи про критичных к пропаданиям и качеству электроэнергии потребителей, мы видим, что этот вариант решения малоприемлем, так как с момента пропадания напряжения до момента его восстановления посредством генераторной установки происходит перерыв в электроснабжении и генераторная установка не защищает от различного рода искажений входной сети.

Чтобы обеспечить критичных к качеству электроэнергии потребителей бесперебойным питанием и в тоже время иметь достаточно большое время автономии, мы рекомендуем использовать совместную работу ИБП и ГУ. В момент пропадания напряжения основной электросети ИБП питает энергией АКБ наиболее ответственных потребителей. Остальные потребители остаются обесточенными до момента запуска генераторной установки. После запуска ГУ ИБП переходит в нормальный режим работы и заряжает АКБ. Это наиболее приемлемый вариант с точки зрения надежности.

Однако при совместной работе ИБП и ГУ необходимо иметь в виду, что при расчете мощности ГУ мощность ИБП, рассчитанную ранее, нужно суммировать с мощностями остальных потребителей электроэнергии, принимая во внимание коэффициент запаса (1,3-2 в зависимости от того, какой выпрямитель у ИБП и есть ли THD-фильтры), учитывающий гармонические искажения самого ИБП. Итак, как мы видим, решение проблемы резервного электроснабжения — достаточно сложная и многогранная задача, требующая серьезной проработки

При этом учитывается множество факторов, касаемых как самой нагрузки, так и оборудования. Мы рекомендуем при решении задач такого рода во избежание совершения ошибок и для экономии вашего времени консультироваться со специалистами.

Андрей Борисович МАЛЫШЕВ, ООО «СВЭЛ».www.dizelek.ru

По способу запуска

  • ручной — используется только для небольших портативных станций, запуск происходит с помощью шнура посредством раскручивания коленвала двигателя до нужной для запуска частоты;
  • электростартерный — используется для всех установок, запуск происходит с помощью электростартера посредством поворота ключа зажигания;
  • автоматический — используется для установок, в которых реализована функция автоматического запуска. Требует наличия дополнительного оборудования. Не обязательно присутствие человека при запуске и принятии нагрузки.

Теперь рассмотрим основные виды генераторных установок в комплексе.

Производители

Распределение продаж ИБП по производителям (2017 г., «IT Research»):

Поставщик млн долл. % Комментарий
Schneider Electric 128,1 39,6 % Ранее бренд APC, сейчас поглощен гигантом Schneider Electric
Ippon 28,0 8,7 % Бренд представлен только в РФ, данные не проверяются по сайту производителя и держателя бренда
Eaton 25,7 8 % Общая прибыль 770 млн.долл. (), пропорция взята из более ранних отчетов
Delta 19,0 5,9 % Имеется в виду Delta Energy Systems, не имеющая отношения к бренду батарей Delta в РФ
Powercom 18,0 5,6 % Ошибочно указана доля на рынке РФ, а не мировом
SIpower 10,5 3,3 % Данные не подтверждены документально
CyberPower 9,4 2,9 % На международном сайте не указана информация позволяющая отделить прибыль по основному сегменту ИБП от прибыли с продажи сопутствующих товаров и услуг
Vertiv Liebert 8,3 2,6 %
GE Digital Energy 7,8 2,4 %
Huawei 7,5 2,3 %
Legrand 7,3 2,3 %
ABB 7,3 2,2 %
ELTENA (Inelt до 2018 года) 6,8 2,1 %
Makelsan 5,7 1,7 %
МикроАРТ 5,2 1,6 % ИБП МАП SINe 15 лет производства ИБП.
Riello 4,9 1,5 %
Powerman 4,6 1,4 %
Socomec UPS 4,2 1,4 %
Benning 2,8 0,9 %
FSP 2,4 0,7 %
Dexp 2,2 0,7 %
3Cott 1,9 0.6 %
Tripp Lite 0,4 0,4 %
Irbis 0,6 0,2 %
Sven 0,5 0,2 %
Всего 323,2 100,00 %

Фильтрация

Фильтрация (сглаживание) выполняется с помощью электролитического конденсатора большой емкости, связанного с источником постоянного тока DC, который работает как емкость, поставляя ток выходу, когда переменное выпрямленное напряжение DC от выпрямителя падает. На рисунке показаны: несглаженное переменное выпрямленное напряжение DC (пунктирная линия) и сглаженное DC (сплошная линия). Конденсаторные заряжается быстро возле максимума переменного выпрямленного напряжения, и затем разряжается после поставки тока к выходу.

Следует отметить, что сглаживание значительно увеличивает среднее напряжение DC почти до максимального значения (1.4*действующее значение). Например, 6В действующего переменного напряжения AC соответствует полной волне DC приблизительно 4.6В действующего напряжения (1.4В теряется в мостовом выпрямителе), при сглаживании оно увеличивается к почти максимальному значению, дающему 1.4*4.6 = 6.4В сглаженного DC. Сглаживание не является идеальным из-за падения напряжения конденсатора во время его разрядки, что вносит небольшое напряжение пульсаций. Для многих схем пульсации, которые составляют 10 % напряжения питания, является допустимыми, и уравнение ниже позволяет определить необходимое значение емкости для сглаживающего конденсатора. Конденсатор большой емкости вносит меньшие пульсации. Значение емкости конденсатора должно быть удвоено, когда полуволна DC сглажена.

Сглаживающий конденсатор с 10% пульсацией,С = (5*Io)/(Vs*f)

С — ёмкость конденсатора в Фарадах (Ф); Io — выходной ток от источника питания в Амперах (A); Vs — напряжение питания в Вольтах (В), это — максимальное напряжение несглаженного напряжения; f — частота источника переменного напряжения в Герцах (Гц), 50 Гц в Великобритании.

ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ БЛОКА ПИТАНИЯ

При выборе блока питания стоит принимать во внимание ряд характеристик, среди которых:

  • мощность;
  • выходное напряжение и ток;
  • а также наличие дополнительных опций и возможностей.

Мощность.

Параметр, который измеряется в Вт или В*А

При выборе устройства стоит брать во внимание наличие пусковых токов у многих электроприемников (насосов, поливных систем, холодильников и прочих). В момент пуска потребляемая мощность вырастает в 5-7 раз

Что касается остальных случаев, блок питания выбирается с учетом суммарной мощности питающихся приборов с рекомендуемым запасом в 20-30%.

Входное напряжение.

В России этот параметр составляет 220 Вольт. Если использовать БП в Японии или США, потребуется устройство с входным напряжением на 110 Вольт. Кроме того, для инверторных блоков питания эта величина может составлять — 12/24 Вольта.

Выходное напряжение.

При выборе прибора стоит ориентироваться на номинальное напряжение применяемого потребителя (указывается на корпусе прибора). Это может быть 12 Вольт, 15,6 Вольта и так далее. При выборе стоит покупать изделие, максимально приближенное к требуемому параметру. Например, для питания устройства на 12,1 V подойдет блок на 12 V.

Тип выходного напряжения.

Большая часть приборов питается от стабилизированного постоянного напряжения, но есть и те, которым подойдет постоянное нестабилизированное или переменное. С учетом этого критерия выбирается и конструкция. Если потребителю достаточно нестабилизированного постоянного U на входе, БП со стабилизированным напряжением на выходе также подойдет.

Выходной ток.

Параметр этот может и не указываться, но при знании мощности его можно рассчитать. Мощность (P) равна напряжению (U), умноженному на ток (I). Следовательно, для расчета тока необходимо мощность поделить на напряжение. Имеющийся параметр пригодится для выбора подходящего блока питания под конкретную нагрузку.

По-хорошему рабочий ток должен превышать на 10-20% максимально потребляемый ток устройства.

Коэффициент полезного действия.

Большая мощность блока питания — еще не гарантия хорошей работы. Не менее важным параметром является КПД, отражающий эффективность преобразования энергии, и ее передачи к прибору. Чем выше КПД, тем эффективнее используется блок, и тем меньше энергии идет на нагрев.

Защита от перегрузок.

Многие источники оборудованы защитой от перегрузок, обеспечивающей отключение БП в случае превышения уровня тока, потребляемого из сети.

Защита от глубокого разряда.

Ее задача заключается в разрыве цепи питания при полном разряде АКБ (характерно для бесперебойных БП). После восстановления питания работоспособность устройства восстанавливается.

Кроме перечисленных выше опций, в блоке питания может быть предусмотрена защита от КЗ, от перегрева, перегрузки по току, повышенному и пониженному напряжению.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Оцените статью:
Оставить комментарий