Изобретение электровакуумного диода

Что представляет собой устройство

Современный диод вакуумного типа представляет собой баллон, выполненный из металлокерамики или стекла, лишенный воздуха. Их этого баллона выкачивают воздух до давления, находящегося на уровне 10-6 — 10-7 мм рт. ст. Отсюда и название данного элемента электросхем.

Строение диод вакуумного типа

Внутри такой баллон размещены два электрода. Одним из них является катод. Он имеет вид металлического вертикального цилиндра, который покрыт слоем оксида щелочно-земельных металлов (кальция, стронция, бария). Благодаря такому напылению данный элемент получил название оксидный катод.

Катод внутри содержит изолированный проводник, нагреваемый переменным или постоянным током. При нагревании, катод испускает электроны, которые движутся и достигают второго элемента вакуумного диода – анода. Анод имеет вид овального или круглого цилиндра. Он с катодом имеет общую ось. Схема диода вакуумного типа имеет следующий вид.

Схема диода вакуумного типа

Кроме вакуумного диода существует еще такое понятие, как электровакуумный диод. Под собой электровакуумный диод подразумевает двухэлектродную вакуумную электронную лампу. Ее строение аналогично диоду вакуумного типа. По сути это одно и тоже. Здесь катод представляет собой W-образную или прямую нить. Он, в процессе работы такой лампы, нагревается до определенной температуры. В результате нагрева возникает термоэлектронная эмиссия. В ходе подачи на анод отрицательного напряжения относительно катода, электроны возвращаются обратно на катод. Когда на анод подается положительное напряжение, часть из эмитированных электронов начинает двигаться в нему. В результате возникает ток.В результате своей работы вакуумные диоды и их аналоги способны на выпрямление приложенного к ним напряжения. Таким основным своей свойством обладают вакуумные выпрямители, поэтому они используются в качестве детекторов сигналов высокой частоты и выпрямления переменного тока. Такое устройство характерно для всех изделий подобного типа. При этом данное устройство и определяет основные характеристики изделия, а также то, какое применение оно будет иметь.

Вакуумный диод.

Вакуумный
диод состоит из катода К в виде тонкой прямой нити и анода А, часто
представляющего собой коаксиальный с нитью цилиндр (рис 1.1). Катод и анод
впаяны в стеклянный баллон, внутри которого создан высокий вакуум.

При
неизменном токе накала, т.е. при неизменной температуре катода, сила анодного
тока зависит от анодного напряжения. При постепенном повышении анодного
напряжения сила анодного тока Iа растет (рис. 1.2) до определенного значения
Iн, после чего она остается неизменной, несмотря на дальнейшее увеличение
анодного напряжения.

Наибольший
ток, возможный при данной температуре катода, называют током насыщения.

График
(рис. 1.2) называют вольтамперной характеристикой диода.

Пояснение
к графику. При анодном напряжении, равном нулю, вылетевшие из катода электроны
образуют вокруг него отрицательный пространственный заряд, называемый
электронным облаком, который отталкивает вылетающие из катода электроны.
Большая их часть возвращается на катод и лишь незначительному числу электронов
удается долететь до анода; поэтому при Uа = 0 сила анодного тока Iа немногим
больше нуля. Для того чтобы Iа = 0, нужно приложить к аноду небольшое
отрицательное напряжение. Поэтому вольт-амперная характеристика диода
начинается немного левее начала координат.

С
увеличением положительного анодного напряжения увеличивается число электронов,
переносимых на анод, и электронное облако около катода постепенно уменьшается.
Когда оно полностью исчезает, т. е. когда все термоэлектроны, вылетающие из
катода, достигают анода, сила анодного тока перестает расти и он становится
током насыщения.

Очевидно,
что для увеличения тока насыщения необходимо увеличить число электронов,
вылетающих за 1 с. из катода, т. е. нужно повысить температуру катода, усилив
ток накала. На рис. 1.3 приведены вольт-амперные характеристики диода при
различных температурах катода, причем T1 < T2 < T3.

Рассмотренный
выше катод прямого накала не пригоден при нагреве катода переменным током, так
как в этом случае возникают колебания анодного тока, вызванные небольшими
периодическими изменениями температуры нити катода. От этого недостатка
свободен диод с катодом косвенного накала (подогревным). Его условное
обозначение дано на рис. 1.4. Подогревной катод состоит из керамической
трубочки, внутри которой помещен проводник-нагреватель, питаемый переменным
током. На трубочку надет массивный никелевый цилиндрик, испускающий при нагревании
электроны. Он покрыт оксидным слоем, уменьшающим работу выхода электрона.
Достаточно большая масса катода обеспечивает постоянство его температуры. В
настоящее время катоды косвенного накала применяют и в других электронных
лампах.

Двухэлектродная
электронная лампа пропускает ток только в одном направлении. Поэтому ее
используют в качестве выпрямителя переменного тока. Диод, действующий как
выпрямитель, называют кенотроном.

Через
кенотрон ток протекает лишь в течение одной половины периода переменного тока,
когда в диоде он направлен от анода к катоду. На рис. 1.5 приведен график
выпрямленного тока: по оси абсцисс отложено время, по оси ординат — сила тока.
Такой ток называют однополупериодным пульсирующим.

Если
в цепь включить два кенотрона или кенотрон с двумя анодами, то можно
использовать оба полупериода переменного тока. Изменение силы
двухполупериодного выпрямленного тока со временем показано на рис. 1.6.

Носители заряда в полупроводниках

В полупроводниках носителями заряда являются электроны.
Для удобства описания процессов проводимости в полупроводниках вводят понятие квазичастицы — дырка — положительно заряженная частица с зарядом равным по модулю заряду электрона. Фактически дырка — это электрон, перескакивающий на свободную соседнюю вакансию в кристаллической решётке полупроводника. Макроскопически дырки ведут себя так как истинные положительно заряженные частицы, в частности знак ЭДС в эффекте Холла указывает на движение положительно заряженных частиц в дырочном полупроводнике.

По отношению концентраций электронов и дырок различают собственные полупроводники, в которых концентрация электронов и дырок равны, полупроводники с электронным типом проводимости или иначе называемые полупроводниками n-типа проводимости или просто n-типа с увеличенной по сравнению с дырками концентрацией электронов и полупроводники с дырочным типом проводимости называемые полупроводниками p-типа — с увеличенной концентрацией дырок.

Тип той или иной проводимости чистому полупроводнику придает легирующая примесь. Примеси, придающие полупроводнику электронный тип проводимости называют донорными примесями, а примеси придающие дырочный тип проводимости называют акцепторными примесями.

Чистые полупроводники и полупроводники с равной концентрацией акцепторных и донорных примесей, такие полупроводники называют компенсировнными полупроводниками образуют собственные полупроводники.

Электроны в полупроводнике n-типа называют основными носителями, а дырки — неосновными, в полупроводнике p-типа соответственно наоборот. Ток неосновных носителей играет важную роль в некоторых типах полупроводниковых приборов, например в биполярных транзисторах а активном режиме ток, протекающий через базовый слой, является током неосновных носителей.

Согласно зонной теории энергия электрона в кристаллической решётке полупроводника не может принимать произвольный ряд энергий, а только их энергии могут лежать в пределах определённых диапазонов — разрешенных зон, разделённых запрещенной зоной. Разрешенную зону с меньшей энергией называют валентной зоной, а разрешенную зону с высокой энергией называют зоной проводимости. Электроны с энергиями валентной зоны несвободны, то есть не могут двигаться при наложении электрического поля, так как все энергетические уровни в этой зоне заняты и согласно принципу запрета Паули электрон не может изменить свое состояние, а движение требует изменения состояния. Электроны с энергиями зоны проводимости подвижны, так в ней имеются расположенные выше свободные энергетические уровни.

Если из валентной зоны удалить электрон, то в ней образуется положительно заряженная вакансия — дырка, которую может занять другой электрон из валентной зоны, то есть при наложении электрического поля происходит движение дырок в валентной зоне — возникновение электропроводности в валентной зоне — дырочной проводимости.

Освобождение электрона из узла кристаллической решётки полупроводника и перевод его в зону проводимости требует затраты определённой энергии активации (ионизации). Эта энергия в чистых полупроводниках равна разности энергий низа зоны проводимости и верха валентной зоны и называется шириной запрещённой зоны. В собственных легированных полупроводниках энергия активации равна разности уровней донорных и акцепторных примесей.

Так как для появления свободных носителей в полупроводниках требуется энергия активации, при абсолютном нуле температуры и отсутствия внешнего облучения все полупроводники являются диэлектриками. При повышении температуры часть электронов переходит из валентной зоны в зону проводимости и возникает электропроводность. В легированных полупроводниках акцепторные уровни находятся вблизи верха валентной зоны, а уровни донорных примесей вблизи низа зоны проводимости, поэтому в легированных полупроводниках ионизация (возникновение носителей заряда) требует очень малой энергии активации, поэтому в слаболегированных полупроводниках уже при комнатной температуре все примесные атомы ионизированы и проводимость определяется в основном концентрацией легирующей примеси.

Генерация и рекомбинация носителей заряда

В электролитах, полупроводниках, плазме одновременно происходят процессы рекомбинации и ионизации частиц. Электрически нейтральные атомы и молекулы распадаются на заряженные частицы — ионизация и одновременно частицы разных знаков притягиваются друг к другу и образуют электрически нейтральные частицы — рекомбинация. В равновесном состоянии число актов рекомбинации и диссоциации в единицу времени равны друг другу и в среде устанавливается равновесная концентрация носителей заряда. Выведенная из состояния равновесия система постепенно самопроизвольно переходит в равновесную. Постоянную времени установления равновесной концентрации зарядов называют временем релаксации.

Диссоциация нейтральных частиц происходит главным образом из-за теплового движения и колебания частиц, их соударений. Так как на диссоциацию требуется некоторая энергия, называемая энергией активации, то концентрация носителей заряда, если нет иных факторов, препятствующих тепловой диссоциации, нарастает при повышении температуры. Именно поэтому электропроводность электролитов, полупроводников, не полностью ионизированной плазмы нарастает при повышении температуры. Количественно концентрация носителей заряда в веществе в зависимости от температуры выражается уравнением Аррениуса.

Известен механизм диссоциации на заряженные частицы посредством внешнего нетеплового воздействия, например, электромагнитным излучением или потоком быстрых частиц, например, потоком электронов, ионизирующим излучением. При таком воздействии концентрация носителей заряда повышается по сравнению с равновесной тепловой концентрацией. Поглощение фотона или заряженной частицы в полупроводнике порождает с некоторой вероятностью электронно-дырочную пару, это явление используется в различных полупроводниковых фотоприёмниках и полупроводниковых детекторах частиц. Макроскопически повышение концентрации носителей заряда проявляется в изменении электрических свойств, например, электропроводности.

Рекомбинация заряженных частиц сопровождается выделением энергии равной энергии диссоциации или энергии ионизации. В большинстве случаев эта энергия превращается в тепловое движение, но может переходить в иные виды энергии, например, уноситься фотоном, как в светодиодах и полупроводниковых лазерах в актах рекомбинации электронно-дырочных пар.

Вакуумный диод

Вакуумный диод содержит накальный катод и анод. Чтобы электроны, вышедшие из катода, достигли анода, скорость электронов vx должна быть не только больше г вых, но и достаточной для преодоления потенциального барьера в вакууме.

Принципиальная схема генератора шуми-вых сигналов на диоде.

Миниатюрный вакуумный диод, например 2Д2С, работает в режиме насыщения. Сопротивление нагрузки К должно быть согласовано с входным сопротивлением устройства, на вход которого подается мощность шума.

Конструкция теплового генератора шума.

Миниатюрный вакуумный диод, например 2Д2С, работает в режиме насыщения. Сопротивление нагрузки R должно быть согласовано с входным сопротивлением устройства, на вход которого подается мощность шума.

Дан вакуумный диод с плоскими вольфрамовыми электродами. Катод косвенного накала имеет эффективность At 4 ма / вт и питается от источника постоянного напряжения 10 в.

Если вакуумный диод работает не в области насыщения, то объемный заряд перед катодом заметно снижает дробовой шум.

Потенциальный барьер при отрицательном анодном напряжении.| Потенциальный барьер при.

Если вакуумный диод включен в прямом направлении ( анод имеет положительный потенциал), ток определяется по формуле Ричардсона. Однако при определенном значении анодного напряжения происходит увеличение тока при возрастании напряжения.

Дан плоский вакуумный диод со следующими параметрами: расстояние между электродами rfl 53 мм, площадь поверхности электродов 5 5 смг, ток насыщения / s 500 жа.

Преимуществом вакуумных диодов в сравнении с полупроводниковыми являются: меньшая зависимость параметров от температуры окружающей среды, меньшая инерционность, практическое отсутствие обратного тока. Недостатки: большая масса и габариты, меньшая долговечность, худшая экономичность ( требуется разогрев катода), относительно большое сопротивление постоянному току для прямого направления.

Преимуществом вакуумных диодов в сравнении с полупроводниковыми являются: меньшая зависимость параметров от температуры окружающей среды, меньшая инерционность, практическое отсутствие обратного тока. Недостатки: большая масса и габариты, меньшая долговечность, худшая экономичность ( требуется разогрев катода), относительно большое сопротивление достоянному току для прямого направления.

Триодные ламповые вольтметры по мостовой схеме.

Вместо вакуумных диодов можно с успехом применять полупроводниковые диоды, например германиевые. Достоинством вольтметра с такими диодами является отсутствие источника накала и начального тока. Таким образом, отпадает необходимость компенсации этого тока.

Применение вакуумных диодов основано на односторонней проводимости. Если к цепи из последовательно соединенных диода и нагрузки подключить переменное напряжение, то по нагрузке с сопротивлением Rn ( рис. 1.6, а) будет протекать электрический ток только в те моменты, пока на аноде будет действовать положительная полуволна напряжения. Напряжение противоположной полярности на электродах ( — на аноде, на катоде) создает в лампе тормозящее электрическое поле, электронный поток отсутствует, сопротивление лампы резко возрастает и ток в сопротивлении нагрузки не протекает. Через нагрузочный резистор проходят только полуволны тока положительной полярности. Ток, изменяющийся по величине, но одного направления, называется пульсирующим.

Классификация и система обозначений диодов

В СССР

На территории СССР система условных обозначений неоднократно претерпевала изменения и до настоящего времени на радиорынках можно встретить полупроводниковые диоды, выпущенные на заводах СССР и с системой обозначений согласно отраслевого стандарта ГОСТ 11 336.919-81, базирующегося на ряде классификационных признаков изделий.

  1. Первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
    • Г или 1 — германий или его соединения;
    • К или 2 — кремний или его соединения;
    • А или 3 — соединения галлия (например, арсенид галлия);
    • И или 4 — соединения индия (например, фосфид индия);
  2. второй элемент — буквенный индекс, определяющий подкласс приборов;
    • Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;
    • Ц — выпрямительных столбов и блоков;
    • В — варикапов;
    • И — туннельных диодов;
    • А — сверхвысокочастотных диодов;
    • С — стабилитронов, в том числе стабисторов и ограничителей;
    • Л — излучающие оптоэлектронные приборы;
    • О — оптопары;
    • Н — диодные тиристоры;
  3. третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
  4. четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;
  5. пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

Например: КД212Б, ГД508А, КЦ405Ж.

Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.

Зарубежная система обозначений

Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом. Наиболее распространены стандарты EIA/JEDEC и европейский «Pro Electron».

Система EIA/JEDEC

Дополнительные сведения: Electronic Industries Alliance и Joint Electron Devices Engineering Council

Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединённый инженерный консилиум по электронным устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148
(кремниевый), 1N4001—1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A).

Система Pro Electron

Дополнительные сведения: Pro Electron

Согласно европейской системе обозначений активных компонентов Pro Electron, введённой в 1966 году и состоящей из двух букв и числового кода:

  1. первая буква обозначает материал полупроводника:
    • A — Germanium (германий) или его соединения;
    • B — Silicium (кремний) или его соединения;
  2. вторая буква обозначает подкласс приборов:
    • A — сверхвысокочастотные диоды;
    • B — варикапы;
    • X — умножители напряжения;
    • Y — выпрямительные диоды;
    • Z — стабилитроны, например:
  • AA-серия — германиевые сверхвысокочастотные диоды (например, AA119);
  • BA-серия — кремниевые сверхвысокочастотные диоды (например: BAT18 — диодный переключатель)
  • BY-серия — кремниевые выпрямительные диоды (например: BY127 — выпрямительный диод 1250V, 1А);
  • BZ-серия — кремниевые стабилитроны (например, BZY88C4V7 — стабилитрон 4,7V).

Другие системы обозначений

Другие распространённые системы нумерации/кодирования (обычно производителем) включают:

  • GD-серия германиевых диодов (например, GD9) — это очень старая система кодирования;
  • OA-серия германиевых диодов (например, OA47) — кодирующие последовательности разработаны британской компанией Mullard.

Система JIS маркирует полупроводниковые диоды, начиная с «1S».

Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:

  • HP диод 1901-0044 = JEDEC 1N4148
  • Военный диод CV448 (Великобритания) = Mullard типа OA81 = GEC типа GEX23

Графические символы различных типов диодов используемые на электрических схемах в соответствии с их функциональным назначением. треугольник указывает направление тока от анода к катоду (прямая проводимость).

Интересные факты

  • В первые десятилетия развития полупроводниковой технологии точность изготовления диодов была настолько низкой, что приходилось делать «разбраковку» уже изготовленных приборов. Так, диод Д220 мог, в зависимости от фактически получившихся параметров, маркироваться и как переключательный (Д220А, Б), и как стабистор (Д220С)[источник не указан 4049 дней]. Радиолюбители широко использовали его в качестве варикапа.
  • Диоды могут использоваться как датчики температуры.
  • Диоды в прозрачном стеклянном корпусе (в том числе и современные SMD-варианты) могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету). Существуют радиолюбительские схемы, в которых обычные диоды используются в качестве фотодиода и даже в качестве солнечной батареи.

Длина свободного пробега носителей заряда

Среднее расстояние, на котором движение носителя заряда может считаться независимым от присутствия других частиц называют длиной свободного пробега. Обычно это расстояние равно длине пути частицы до столкновения с другой частицей, но например, в плазме длиной пробега считается расстояние до существенного электростатического взаимодействия с другой заряженной частицей плазмы и изменении направления движения.

В электролитах длина свободного пробега ограничена столкновениями, в металлах длина свободного пробега электронов ограничена рассеиванием электронов на атомах, дефектах кристаллической решетки и её тепловых колебаниях — рассеиванием на фононах.

В полупроводниках электроны и дырки рассеиваются на дефектах кристаллической решетки, примесных атомах и на фононах. В чистых полупроводниках длина свободного пробега может достигать при низких температурах нескольких миллиметров.

В вакууме и разреженной плазме понятие длины свободного пробега теряет смысл, так как частицы не взаимодействуют. Условно можно считать, что длина свободного пробега равна размерам сосуда.

Чем выше длина свободного пробега λ{\displaystyle \lambda } и больше концентрация носителей n{\displaystyle n}, тем выше удельная электропроводность σ{\displaystyle \sigma }:

σ≈λ⋅n.{\displaystyle \sigma \approx \lambda \cdot n.}

Принцип действия

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

Электронная лампа RCA ‘808’

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газоразрядные электронные лампы

Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).

Типы газоразрядных электронных ламп:

  • неоновая лампа
  • стабилитрон
  • ионный разрядник
  • тиратрон
  • игнитрон

Неоновая лампа

Неоновая лампа — газосветный прибор тлеющего разряда, состоящая из стеклянного баллона, в котором располагаются два электрода (катод и анод). Баллон наполнен инертным газом (неоном) при небольшом давлении. Электроды изготавливаются из неактивированного металла, например никеля, и могут быть различной формы (два цилиндрических, два плоских и др.)

Неоновые лампы излучают оранжево-красное свечение небольшой интенсивности и используются в частности как сигнальные. Неоновую лампу необходимо включать с ограничительным сопротивлением, иначе разряд сразу переходит в дуговой и лампа выходит из строя.

Стабилитрон

Газоразрядный стабилитрон представляет собой стеклянный баллон, в котором находятся два электрода — катод и анод. Катод имеет форму цилиндра с большой поверхностью, анод — стержень, расположенный вдоль оси катода. Внутренняя поверхность катода активируется. Баллон наполняется аргоном, неоном или смесью газов при давлении в несколько десятков миллиметров ртутного столба. Благодаря большой поверхности катода, напряжение между электродами при значительных изменениях тока остается неизменным.

Параметрами стабилитрона являются: напряжение зажигания, напряжение горения, минимальный и максимальный ток. Величина напряжения стабилизации зависит от вида газа и материала катода, которым наполнен баллон.

Стабилитрон с коронным разрядом

Кроме стабилитронов с тлеющим разрядом, описанных выше, существуют стабилитроны с коронным разрядом. Устройство данных стабилитронов схоже со стабилитронами тлеющего разряда. Баллон наполняется водородом при низком давлении. Стабилитроны с коронным разрядом имеют в несколько раз более высокие значения напряжения горения, и позволяют стабилизировать напряжение порядка 300—1000 В и более. Однако ток, проходящий через такой стабилитрон в сотни раз меньше чем у стабилитронов с тлеющим разрядом.

Микроэлектронные приборы с автоэмиссионным катодом

Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.

Автоэмиссионный диод

Оцените статью:
Оставить комментарий