Электродвижущая сила

ЭДС катушки индуктивности

Особенность катушки – способность создавать магнитное поле, если по её проводу течёт электрический ток, что называется индуктивностью.


Схема ЭДС с катушкой индуктивности

Допустим, собрана схема с катушкой с железным сердечником и лампочкой, подключенной параллельно. Если сначала замкнуть цепь, дав току, протекающему в неё, установиться, а потом резко разомкнуть, лампочка резко вспыхнет. Что свидетельствует о том, что при отключении цепи от источника питания ток из катушки перешёл в лампу. То есть ток в катушке был и имел вокруг себя магнитное поле, после исчезновения которого возникла ЭДС.

Такая электродвижущая сила называется ЭДС самоиндукции, так как она появилась от собственного магнитного поля катушки.

4.1. Опыты Фарадея. ЭДС индукции

а б

Рис. 4.1. Схемы опытов Фарадея

В 1831г. Фарадей открыл явление электромагнитной индукции, заключающееся в возникновении тока под действием переменного магнитного поля. Схема опытов Фарадея приведена на рис. 4.1. Он установил, что ток в первой катушке возникает: при движении по­стоянного магнита относительно катушки (рис.4.1а

); при изменении тока во второй катушке (рис.4.1б ); при движении катушек относительно друг друга (во второй при этом существует постоянный ток). Чем быстрее движется магнит или вторая катушка, тем больше сила тока. Отсюда можно было сделать вывод:в замкнутом контуре возникает ток при изменении потока магнитной индукции, пронизывающего контур . Это означает, что в контуре возникает ЭДС индукции:

. (4.1)

ЭДС индукции

равна скорости изменения магнитного потока, пронизывающего контур (точнее, производной от потока по времени). Если в контуре имеетсяN витков с плотной намоткой, то индуцированные в каждом витке ЭДС будут складываться, и формула (4.1) при­нимает вид:

. (4.2)

Рис.4.2. Демонстрация правила Ленца

Знак (-) в правой части формул отражает правило Ленца

:возникающий в замкнутом контуре ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (т. е. противодействует причине, его породившей). На рис. 4.2 показан опыт с внесением магнита в замкнутое кольцо. Возникающий в кольце индукционный ток создает магнитное поле, препятствующее внесению магнита, и отталкивает кольцо от магнита. При внесении магнита в разрезанное кольцо эффект отсутствует.

Посмотрим, что происходило бы, если бы правило Ленца не выполнялось. Индук­ционный ток в этой ситуации создавал бы магнитный поток, направление которого совпадало бы с исходным изменением; возрастающее изменение потока привело бы к еще большему увеличению индукционного тока, что сопровождалось бы еще большим изменением потока. В результате ток продолжал бы нарастать до бесконеч­ности, выделяя мощность (Р=I2R) даже после прекра­щения первоначального изменения. Это означало бы на­рушение закона сохранения энергии. Таким об­разом,правило Ленца является следствием закона сохранения энергии .

Поскольку ЭДС определяется как циркуляция напряженности электрического поля сторонних сил (см. раздел 2.1), возникновение ЭДС индукции можно трактовать как появление вихревого электрического поля, способного перемещать заряды в замкнутой цепи.

Физика8 класс

§ 50. Работа электрического тока

Как вычислить работу электрического тока? Мы уже знаем, что напряжение на концах участка цепи численно равно работе, которая совершается при прохождении по этому участку электрического заряда в 1 Кл. При прохождении по этому же участку электрического заряда, равного не 1 Кл, а, например, 5 Кл, совершённая работа будет в 5 раз больше. Таким образом, чтобы определить работу электрического тока на каком-либо участке цепи, надо напряжение на концах этого участка цепи умножить на электрический заряд (количество электричества), прошедший по нему:

A = Uq,

где А — работа, U — напряжение, q — электрический заряд. Электрический заряд, прошедший по участку цепи, можно определить, измерив силу тока и время его прохождения:

q = It.

Используя это соотношение, получим формулу работы электрического тока, которой удобно пользоваться при расчётах:

А = UIt.

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Работу измеряют в джоулях, напряжение — в вольтах, силу тока — в амперах и время — в секундах, поэтому можно написать:

1 джоуль = 1 вольт х 1 ампер х 1 секунду,

или

1 Дж = 1 В • А • с.

Выходит, что для измерения работы электрического тока нужны три прибора: вольтметр, амперметр и часы. На практике работу электрического тока измеряют специальными приборами — счётчиками. В устройстве счётчика как бы сочетаются три названных выше прибора. Счётчики электроэнергии сейчас можно видеть почти в каждой квартире.

Пример. Какую работу совершает электродвигатель за 1 ч, если сила тока в цепи электродвигателя 5 А, напряжение на его клеммах 220 В? КПД двигателя 80% .

Запишем условие задачи и решим её.

Вопросы

  1. Чему равно электрическое напряжение на участке цепи?
  2. Как через напряжение и электрический заряд, прошедший через участок цепи, выразить работу электрического тока на этом участке?
  3. Как выразить работу тока через напряжение, силу тока и время?
  4. Какими приборами измеряют работу электрического тока?

Упражнение 34

  1. Какую работу совершает электрический ток в электродвигателе за 30 мин, если сила тока в цепи 0,5 А, а напряжение на клеммах двигателя 12 В?
  2. Напряжение на спирали лампочки от карманного фонаря равно 3,5 В, сопротивление спирали 14 Ом. Какую работу совершает ток в лампочке за 5 мин?
  3. Два проводника, сопротивлением по 5 Ом каждый, соединены сначала последовательно, а потом параллельно и в обоих случаях включены под напряжение 4,5 В. В каком случае работа тока за одно и то же время будет больше и во сколько раз?

Электрическое напряжение и ЭДС

Допустим, у нас имеется электрическое поле. Рассмотрим в нем произвольную кривую (рис.1) $l$, которая соединяет точки $A$ и $B$. Укажем на этой криво положительное направление.

Рисунок 1. Электрическое поле. Автор24 — интернет-биржа студенческих работ

Напряжение по избранной нами кривой равно:

$U=\int\limits_l {\vec{E}d\vec{l}=\int\limits_l {E_{l}dl} \left( 2 \right).} $

Так как напряженность $\vec E$ имеет смысл силы, которая действует на единичный положительный заряд, то интеграл (2) – это работа поля по движению заряда по кривой $l$. Напряжение равно разности потенциалов в начале и конце рассматриваемой кривой:

$U=\varphi_{1}-\varphi_{2}\left( 3 \right)$.

Электрическое напряжение вдоль кривой не зависит от ее формы и полностью определено положением начала и конца линии.

Рассмотрим циркуляцию вектора напряженности по контуру $L$ рис.2.

Рисунок 2. Циркуляция вектора напряженности по контуру. Автор24 — интернет-биржа студенческих работ

Выделим на рассматриваемом контуре две точки $A$ и $B$, которые делят наш контур на два незамкнутых криволинейных отрезка $l_{12}$ и $l_{21}$, учитывая (2) и (3), имеем:

$\oint\limits_L {\vec{E}d\vec{l}=\int\limits_A^B{\vec{E}d\vec{l}+\int\limits_B^A {\vec{E}d\vec{l}=} } } \left( \varphi{1}-\varphi_{2} \right)+\left( \varphi_{2}-\varphi_{1} \right)=0\,\left( 4 \right)$

Мы получили, что циркуляция вектора напряженности по замкнутому контуру равна нулю.

Определение 3

В теории электричества электродвижущей силой контура (ЭДС) называют циркуляцию вектора напряженности по этому контуру.

$Ɛ=\oint\limits_L {\vec{E}d\vec{l}=0\, \left( 5 \right).} $

В электростатическом поле ЭДС любого замкнутого контура равна нулю.

Что такое ЭДС в физике – физический смысл

Электрический ток будет проходить через проводник только в том случае, если единовременно соблюдаются два простых условия:

  1. В проводнике присутствуют свободные электроны (например, в металлах электронов, не связанных с атомом, большинство).
  2. В проводнике присутствует сила, вынуждающая электроны двигаться.

Допустим, на концы электрода подали разные по знаку заряды, которые под действием кулоновской силы начинают притягиваться друг к другу.

Однако без сторонних сил электрическое поле, появившееся в результате такого взаимодействия, исчезнет, как только электроны придут в равновесие, поэтому для поддержания в проводнике электрического тока нужен источник питания, например батарейка.

ВАЖНО: электроны могут перемещаться только силами неэлектрического происхождения (сторонними силами), ярким примером которых являются химические процессы, происходящие в батарее. При замыкании цепи «проводник – источник тока» электроны вновь начнут движение друг к другу, но как только положительный заряд приблизится к отрицательному, сторонние силы перенесут его обратно

При замыкании цепи «проводник – источник тока» электроны вновь начнут движение друг к другу, но как только положительный заряд приблизится к отрицательному, сторонние силы перенесут его обратно.

Так, работа этих сторонних сил по переносу единичного положительного заряда называется ЭДС.

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток

Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления)

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение =

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

Электродвигатели и генераторы

Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.

По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.

В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.

Еще немного теории

При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:

I=E/(R+r),

где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.

Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.

При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме

При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника

Действие источника электрического тока

В любой электрической цепи происходит движение носителей заряда через звенья цепи. Это движение возможно только под действием некоторого электрического поля. Следовательно, в любой электрической цепи должен существовать специальный элемент, который будет создавать электрическое поле, движущее заряды.

Такой элемент называется источником электрического тока. Источник тока имеет два контакта (полюса), с помощью которых и осуществляется поддержание электрического поля. Между полюсами всегда имеется некоторая разность электрических потенциалов. Теперь если к этим полюсам подключить электрическую цепь, то носители заряда под действием поля придут в движение, совершая полезную работу в цепи. При этом, в источнике тока должен постоянно происходить процесс, который бы поддерживал разность потенциалов на полюсах, несмотря на движение носителей заряда по цепи.

Рис. 1. Виды источников электрического тока.

Электродвижущая сила как мера сторонних сил

Итак, действие источника тока заключается в том, чтобы с помощью сторонних сил производить работу по переносу электрических зарядов между полюсами против действия электрического поля. Для характеристики этой работы существует специальная мера, называемая электродвижущей силой (ЭДС, обозначается буквой $\mathscr{E}$). Ее физический смысл состоит в том, что это работа сторонних сил по переносу единицы заряда. То есть, ЭДС равна отношению работы, произведенной сторонними силами по переносу заряда против действия электрического поля, к величине этого заряда:

$$\mathscr{E} = {A_{ст}\over q}$$

Из данной формулы можно получить единицу измерения ЭДС. Она такая же, как у напряжения – Вольт (напомним, 1 В = 1 Дж / 1 Кл).

ЭДС обычной пальчиковой батарейки 1.5В. То есть, в ней сторонние силы химической природы для переноса 1Кл заряда совершают работу 1.5 Дж.

Рис. 3. Пальчиковые батарейки.

Что мы узнали?

Действие источника тока заключается в переносе зарядов между полюсами против действия электрического поля. Силы, которые совершают эту работу, имеют природу, отличную от электрической, поэтому они называются сторонними. Характеристикой сторонних сил является специальная величина – электродвижущая сила (ЭДС).

Что такое ЭДС индукции

Отмеченное выше перемещение зарядов создает разницу потенциалов, если контур разомкнут. Представленная формула показывает, как именно будет зависеть ЭДС от основных параметров:

  • векторного выражения магнитного потока (B);
  • длины (l) и скорости перемещения (v) контрольного проводника;
  • угла (α) между векторами движения/ индукции.

Аналогичный результат можно получить, если система составлена из стационарной проводящей цепи, на которую воздействует перемещающееся магнитное поле. Замкнув контур, создают подходящие условия для перемещения зарядов. Если использовать много проводников (катушку) или двигаться быстрее, увеличится сила тока. Представленные принципы с успехом применяют для преобразования механических сил в электроэнергию.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Материалы по теме:

  • Свойства и характеристики электрического поля
  • Законы Фарадея в химии и физике
  • Распределение зарядов в проводнике

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Материалы

§ 46. Величина и направление э. д. с. самоиндукции

Величина возникающей в катушке э. д. с. самоиндукции прямо пропорциональна ее индуктивности и зависит от скорости изменения магнитного потока.Если в цепи, обладающей индуктивностью L гн
, ток изменяется за малое время Δt сек
на малую величину ΔI а
, то в такой цепи возникает э. д. с. самоиндукции е
с, измеряемая в вольтах.

Знак минус в этой формуле указывает на то, что э. д. с. самоиндукции противодействует изменению тока в ней.

Пример
. В катушке, обладающей индуктивностью L
= 5 гн
, протекает электрический ток, сила которого изменяется за 2 сек
на 10 а
. Вычислить, какая э. д. с. самоиндукции возникает в катушке.Решение
.

Русский ученый Э. X. Ленц доказал, что э. д. с. индукции, в том числе э. д. с. самоиндукции, всегда направлена так, что она противодействует причине, вызывающей ее
. Это определение называется правилом Ленца
.Если при замыкании цепи э. д. с. батареи направлена, как показано стрелкой на рис. 45, а, то э. д. с. самоиндукции, согласно правилу Ленца, в этот момент будет иметь противоположное направление (показано двойной стрелкой), препятствуя нарастанию тока. В момент размыкания цепи (рис. 45, б), наоборот, э. д. с. самоиндукции будет иметь направление, совпадающее с э. д. с. батареи, препятствуя убыванию тока.

Следовательно, в момент замыкания цепи, обладающей индуктивностью, э. д. с. на зажимах цепи уменьшается на величину возникающей э. д. с. самоиндукции.Обозначив напряжение источника тока U
, величину э. д. с. самоиндукции е
с, а результирующее напряжение U
р, получим:

U
p = U
е
с. (45)

В момент размыкания цепи результирующее напряжение увеличивается:

U
p = U
+ е
с. (46)

Э. д. с. самоиндукции в электрических цепях может во много раз превосходить напряжение источника тока. В связи с этим при размыкании цепей, обладающих большой индуктивностью, происходит пробой воздушного промежутка между контактами рубильников и выключателей и образуется искра или дуга, от которой контакты обгорают и частично расплавляются. Кроме того, э. д. с. самоиндукции может пробить изоляцию проводов катушки.Для наблюдения возникновения э. д. с. и тока самоиндукции в момент размыкания цепи выполним такой опыт (рис. 46).

При замыкании цепи ток в точке А
разветвляется. Одна его часть пройдет по виткам катушки в лампу Л
1 а другая часть — через реостат в лампу Л
2 . При этом лампа Л
2 мгновенно вспыхнет, тогда как нить лампы Л
1 накалится постепенно. При размыкании цепи лампа Л
2 сразу погаснет, а лампа Л
1 на мгновение ярко вспыхнет и затем погаснет. Наблюдаемое явление связано с тем, что при замыкании цепи магнитное поле, создаваемое вокруг катушки L
, пересекает «собственные витки» и возбуждает в ней э. д. с. и ток самоиндукции, который препятствует прохождению основного тока. По этой причине нить лампы Л
1 накаливается при замыкании цепи медленнее нити лампы Л
2 . При размыкании цепи в катушке также создается э. д. с. и ток самоиндукции, но в данном случае направление э. д. с. самоиндукции совпадает с направлением основного тока. Это и служит причиной того, что нить лампы Л
1 на мгновение ярко вспыхивает и гаснет позже лампы Л
2 , в цепь которой катушка не включена.

Оцените статью:
Оставить комментарий