Ардуино микро: распиновка, характеристики

Подключение Arduino Leonardo к питанию

Эту плату можно питать четырьмя способами:

Через порт USB. Можно питать ардуино от компьютера, powerbank, смартфона (если он поддерживает режим OTG) или от адаптера, вставленного в розетку.
Через пин +5V. Этот пин является не только выводом, но и вводом. Будьте внимательны! На этот пин нужно подавать ровно 5 вольт. В противном случае можно спалить сам микроконтроллер.
Через штекер питания, расположенный на плате. Можно использовать, батарейки, аккумуляторы и разнообразные блоки питания. Этот штекер подключен к пину VIN

О напряжении и мерах предосторожности написано в следующем пункте.
Через пин VIN. Ток от этого пина проходит через встроенный стабилизатор напряжения

По заявлениям производителя можно подавать от 5 до 20 вольт. Но это не совсем так. Так как стабилизатор напряжения имеет не 100% КПД, то при подаче 5 вольт на пин VIN напряжения может не хватить на питание микроконтроллера, да и на цифровых пинах будет не 5 вольт, а меньше. Также не стоит работать на максимальном напряжении. При 20 вольтах на пине VIN будет сильно греться стабилизатор напряжения, вплоть до выхода из строя. Поэтому рекомендуется использовать напряжение от 7 до 12 вольт.

Подключение и прошивка Ардуино Leonardo

Для подключения устройства требуется кабель USB, подключенный к ПК, или подача питания от внешнего источника.

Для подключения устройства требуется кабель USB, подключенный к ПК, или подача питания от внешнего источника. Это может быть выносная батарея или адаптер типа AC/DC. Такое решение сделало контроллер более дешевым в производстве, повысилась гибкость применения в работе с компьютером.

При установке драйвера Arduino Leonardo нужно действовать таким образом:

  • подключение устройства к ПК;
  • ожидание запуска мастера установки ПО (при отсутствии запуска ручной переход в раздел оборудования, выбор строчки Arduino Leonardo и нажатие обновления);
  • поиск драйверов на ПК и нажатие «Далее»;
  • в папке с ПО выбор нужного драйвера;
  • согласие с установкой.

Для прошивки устройства достаточно нажатия кнопки Upload, чтобы автоматически загрузить софт в память устройства. Далее инициируется сброс контроллера, что приводит к пуску загрузчика (отвечает за получение, сохранение и старт нового ПО). В отличие от других моделей здесь после автоматического сброса платформа ожидает нового последовательного порта. Далее скетч направляется на вновь созданный COM-порт. Если автоматический сброс по какой-либо причине не активировался, нужно сделать следующее:

  • нажатие кнопки сброса и удерживание ее до момента появления слова Uploading;
  • контроль запуска загрузчика (система должна увидеть новый порт).

Указанные действия необходимы, если стандартная система прошивки не сработала.

Описание элементов платы Arduino Mega 2560

  • Микроконтроллер ATmega2560 — Сердцем платформы Arduino Mega 2560 является 8-битный микроконтроллер семейства AVR — ATmega2560. Он предоставляет 256 КБ флеш-памяти для хранения прошивки, 8 КБ оперативной памяти SRAM и 4 КБ энергонезависимой памяти EEPROM для хранения данных.
  • Микроконтроллер ATmega16U2 — Микроконтроллер ATmega16U2 обеспечивает связь микроконтроллера ATmega2560 с USB-портом компьютера. При подключении к ПК Arduino Mega 2560 определяется как виртуальный COM-порт. Прошивка микросхемы 16U2 использует стандартные драйвера USB-COM — установка внешних драйверов не требуется.
  • Порты ввода/вывода
  • Светодиодная индикация

    • RX и TX — Мигают при обмене данными между Arduino Mega 2560 и ПК.
    • L — Светодиод вывода 13. При задании значения HIGH светодиод включается, при LOW – выключается.
    • ON — Наличие питания на Arduino Mega 2560.
  • Разъём USB Type-B — Разъём USB Type-B предназначен для прошивки платформы Arduino Mega 2560 с помощью компьютера.
  • Разъём для внешнего питания — Разъём для подключения внешнего питания от 7 В до 12 В.
  • ICSP-разъём для ATmega2560 — ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega2560. Также с применением библиотеки SPI данные выводы могут осуществлять связь с платами расширения по интерфейсу SPI. Линии SPI выведены на 6-контактный разъём, а также продублированы на цифровых пинах 50(MISO), 51(MOSI), 52(SCK) и 53(SS).
  • ICSP-разъём для ATmega16U2 — ICSP-разъём для внутрисхемного программирования микроконтроллера ATmega16U2.

Ардуино для начинающих

Arduino – это возможность делать сложные и умные вещи просто. Идеальный вариант для первых шагов начинающих технических гениев. Вы можете легко собрать электронные схемы из готовых конструкторов и наборов, загрузить готовую программу, которую можно скачать совершенно бесплатно и начать использовать умное электронное устройство.

Arduino – это электронные платы, к которым можно подсоединять различные датчики, двигатели, экраны и много других электронных компонентов. Плата Ардуино будет управлять этими компонентами с помощью программы, который вы в нее загрузите. Самые популярные платы для начинающих – это Arduino Uno, Arduino Mega, Arduino Nano и Arduino Leonardo. Кроме этого есть множество  других вариантов, подходящих для конкретных случаев.

Arduino – это еще и совершенно бесплатная среда программирования Arduino IDE, в которой можно писать программы (скетчи) для контроллера. Программа прошивается в микроконтроллер буквально одним нажатием на кнопку. Никаких особых знаний не требуется!  Вы можете даже не писать программу – просто найти и скачать готовый скетч, который просто откроете в Arduino IDE.

Arduino – это сообщество инженеров, всегда готовых помочь советом. Это огромное количество сайтов с документацией, примерами и схемами. Начать можно с официального сайта, но кроме него сегодня появилось огромное количество сайтов на русском с форумом русскоязычных инженеров.

Arduino Mini

Arduino Mini — вид спереди (без разъемов) Arduino Mini — вид сзади

Общие сведения

Arduino Mini — это маленькое микропроцессорное устройство, ориентированное на использование с макетными платами или в приложениях, предъявляющих высокие требования к габаритным размерам. Первоначально устройство было спроектировано на базе микроконтроллера ATmega168, который в настоящее время заменен на микроконтроллер ATmega328 (datasheet). В состав устройства входит: 14 цифровых входов/выходов (из которых 6 могут использоваться в качестве ШИМ-выходов), 8 аналоговых входов и кварцевый резонатор на 16 МГц. Arduino Mini можно прошить с помощью специального USB-Serial адаптера или любого другого преобразователя интерфейсов USB-Serial либо RS232-Serial с TTL-уровнями напряжения.

В новой версии Arduino Mini (R5) обновлена печатная плата под микроконтроллер ATmega328, благодаря чему все компоненты теперь расположены на лицевой стороне платы. Помимо этого, добавлена кнопка сброса. При этом в новой версии Ардуино Mini расположение выводов полностью аналогично предыдущей версии R4.

Внимание: напряжение питания Arduino Mini не должно превышать 9В или не должно быть отрицательным. При несоблюдении этого условия плата может выйти из строя

Характеристики

Микроконтроллер ATmega328
Рабочее напряжение
Напряжение питания 7-9В
Цифровые входы/выходы 14 (из которых 6могут использоваться в качестве ШИМ-выходов)
Аналоговые входы 8 (4 из которых на внешних выводах)
Максимальный ток одного вывода    40 мА
Flash-память 32 КБ (из которых 2 КБ используются загрузчиком)
SRAM 2 КБ
EEPROM 1 КБ
Тактовая частота 16 МГц

Программирование

Arduino Mini программируется с помощью программного обеспечения Ардуино (скачать). Для получения более подробной информации см. справку и примеры.

Для прошивки Arduino Mini можно использовать специальный USB-Serial адаптер или любой другой преобразователь интерфейсов USB-Serial либо RS232-Serial с TTL-уровнями напряжения. Инструкции по прошивке см. на странице «Начало работы с Arduino Mini».

ATmega328 в Arduino Mini выпускается с прошитым загрузчиком, позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 (описание, заголовочные файлы C).

Тем не менее, микроконтроллер ATmega328 можно прошить и через разъем для внутрисхемного программирования ICSP (In-Circuit Serial Programming), не обращая внимания на загрузчик; информацию о распиновке разъема ICSP для прошивки Mini через загрузчик см. на соответствующей странице. Инструкции по использованию внешнего программатора для прошивки контроллера см. здесь.

Входы и выходы

Каждый из 14 цифровых выводов Arduino Mini может работать в качестве входа или выхода. Уровень напряжения на выводах ограничен 5В. Максимальный ток, который может отдавать или потреблять один вывод, составляет 40 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Выводы 3, 5, 6, 9, 10 и 11 могут выводить аналоговые величины в виде ШИМ-сигнала; для получения дополнительной информации об этом см. описание функции analogWrite(). Выводы 0 и 1 используются при подключении устройства к компьютеру через адаптер Mini USB (или похожий). Подключение к этим выводам каких-либо внешних цепей может приводить к нарушению USB-соединения с компьютером или препятствовать процессу загрузки в микроконтроллер новых программ.

В Arduino Mini есть 8 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 различных значения). Входы 0 — 3 выведены на внешний разъем платы; для подключения к входам 4 — 7 на плате предусмотрены отверстия и распаечные площадки. По умолчанию, измерение напряжения осуществляется относительно диапазона от 0 до 5 В. Однако, верхнюю границу этого диапазона можно изменить, используя вывод AREF и несколько низкоуровневых команд.

См. также соответствие выводов Arduino с выводами микроконтроллера ATmega168/328.

Расположение выводов

Примечание: распиновка выводов в Arduino Mini версий 03 и 04 отличается. Убедитесь, что вы используете схему, соответствующую вашей версии Ардуино.

Распиновка Arduino Mini 03. (совместима с более старыми версиями, за исключением отсутствующего разъема IO7 вверху платы)

Распиновка Arduino Mini 04 и 05

(Обратите внимание, что вывод GROUND на левой стороне платы сместился вниз на одну позицию)

Дополнительная информация

Для начала работы с Arduino Mini см. это руководство.

Дополнительную информацию об Arduino Mini можно найти в разделе Playground.

Описание пинов Arduino Mega 2560

Цифровые пины платы Mega

Пины с номерами от 0 до 53 являются цифровыми. Это означает, что вы можете считывать и подавать на них только два вида сигналов: HIGH и LOW. С помощью ШИМ также можно использовать цифровые порты для управления мощностью подключенных устройств.

Пин Адресация Специальное назначение ШИМ
RX (Serial)
1 1 TX (Serial)
2 2 Вход для прерываний 0 ШИМ
3 3 Вход для прерываний 1 ШИМ
4 4 ШИМ
5 5 ШИМ
6 6 ШИМ
7 7 ШИМ
8 8 ШИМ
9 9 ШИМ
10 10 ШИМ
11 11 ШИМ
12 12 ШИМ
13 13 Встроенный светодиод ШИМ
14 14 TX (Serial3)
15 15 RX (Serial3)
16 16 TX (Serial2)
17 17 RX (Serial2)
18 18 TX (Serial1)
Вход для прерываний 5
19 19 RX(Serial1)
Вход для прерываний 4
20 20 I2C SDA
Вход для прерываний 3
21 21 I2C SCL
Вход для прерываний 2
22-43 22-43
44 44 ШИМ
45 45 ШИМ
46 46 ШИМ
47 47
48 48
49 49
50 50 MISO
51 51 MOSI
52 52 SCK
53 53 SCL

Аналоговые пины платы

На платформе Mega2560 имеется 16 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством вывода AREF и функции .

Пин Адресация Специальное назначение
A0 A0 или 54
A1 A1 или 55
A2 A2 или 56
A3 A3 или 57
A4 A4 или 58 TCK
A5 A5 или 59 TMS
A6 A6 или 60 TDO
A7 A7 или 61 TDI
A8 A8 или 62 PCINT16
A9 A9 или 63 PCINT17
A10 A10 или 64 PCINT18
A11 A11 или 65 PCINT19
A12 A12 или 66 PCINT20
A13 A13 или 67 PCINT21
A14 A14 или 68 PCINT22
A15 A15 или 69 PCINT23

Дополнительные пины на плате

  • AREF — Опорное напряжение для аналоговых входов. Используется с функцией .
  • Reset — Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Выводы питания

  • Vin: Входное напряжение платы Arduino при использовании внешнего источника (если отсутствует напряжение 5 вольт на USB-соединении или от другого источника питания). Можно подавать питание на этот вывод, или же, если питание подается на 2.1 мм разъем, то можно с этого вывода получить к питающему входному напряжению.
  • 5V: Напряжение на этих выводах регулируется встроенным в плату регулятором напряжения. Плата может быть запитана либо через 2.1 мм разъем питания (7-12 В), через USB-подключение (5 В), или же через вывод VIN (7-12 В) на плате. Подача питания через выводы 5 В или 3.3 В обходит регулятор и может привести к выходу платы из строя. Так делать не рекомендуется.
  • 3.3V: Напряжение 3.3 вольта формируется при помощи встроенного в плату регулятора. Максимальный ток потребления не должен превышать 50 мА.
  • GND: Выводы земли.
  • IOREF: Этот вывод обеспечивает опорное напряжение, с которым работает микроконтроллер. Для правильной конфигурации внешних плат, можно считывать напряжение с этого вывода и выбирать соответсвующий источник питания или включать преобразователи напряжений для работы с 5 В или 3.3 В.

Arduino для детей

Принято считать, что Arduino довольно сложен для детей средней школы, но это не так! Сегодня есть огромное количество инструментов и технологий, позволяющих без проблем преподавать ардуино на кружках робототехники даже самых маленьких! На нашем сайте вы можете найти уроки Ардуино, помогающие сделать первые шаги в электронике, программировании и робототехнике.

Arduino – это целый мир, в котором можно почувствовать себя волшебником. Лучший инструмент для приобщения детей к технологиям и вдохновленного инженерного творчества! Для обучения детей электронике вы можете использовать как отдельные контроллеры Arduino Uno, Mega или Nano, а также наборы и конструкторы ардуино российских и китайских производителей. Обучение детей программированию Ардуино возможно с использованием среды программирования Arduino IDE или же в визуальных средах ArduBlock, S4A, mBlock, основанных на Scratch.

Выбор платы и порта

Откройте Arduino IDE. Из меню Инструменты>Плата выбирается Arduino/Genuino Mega or Mega 2560.
Выберите процессор/микроконтроллер платы, обычно это ATmega2560. Из меню Инструменты>Процессор выбирается ATmega2560 (Mega 2560).
Выберите последовательное устройство платы в меню Инструменты>Порт. Скорее всего, это COM3 (Arduino/Genuino Mega or Mega 2560) или выше (COM1 и COM2 обычно зарезервированы). Чтобы узнать, вы можете отключить свою плату и повторно открыть меню; запись, которая исчезает, должна быть Arduino или Genuino Mega. Подсоедините плату и выберите этот последовательный порт.
Если у вас модель Arduino Mega 2560 CH340G, то лучше использовать программатор Arduino as ISP.
Имеется возможность не использовать загрузчик и запрограммировать микроконтроллер через выводы ICSP (внутрисхемное программирование).

Arduino Micro: распиновка платы

Плата Arduino Micro Leonardo построена на базе микропроцессора ATmega32u4 и имеет небольшие размеры – 48х177 мм. Но при этом на плате имеется 6 аналоговых входов A0-A5, 14 портов входа – выхода общего назначения из которых 7 портов работают в качестве источника ШИМ сигнала, а еще 6 портов работают в качестве аналогового входа. Таким образом, всего на Arduino Micro USB целых 12 аналоговых входов.


Плата Arduino Micro pinout (распиновка платы на русском)

Распиновка Micro от платы Arduino Nano в том, что процессор ATmega32u4 имеет поддержку USB соединения и может определяться в качестве периферийного устройства на компьютере (клавиатура, джойстик, геймпад или компьютерная мышка). Все прочие характеристики Micro Arduino, кроме принципиальной схемы и габаритов платы, полностью идентичны микроконтроллеру Arduino Leonardo.

Входные и выходные контакты

Каждый из 20 цифровых I/O контактов Leonardo можно использовать и в качестве входного, и в качестве выходного контакта – при помощи функций pinMode(), digitalWrite() и digitalRead(). Они оперируют на 5 вольтах. Каждый контакт может давать/получать не более 40 миллиампер и имеет встроенный подтягивающий резистор (по умолчанию отключен) на 20-50 кОм. Кроме того, некоторые контакты имеют специальные функции:

Последовательная передача данных: 0-ой (RX) и 1-ый (TX) контакты. Используются для получения (RX) и передачи (TX) последовательных (TTL) данных при помощи чипа ATmega32u4

Обратите внимание, что для использования коммуникации типа USB (CDC) в Leonardo используется класс Serial, а для коммуникации типа TTL, которая осуществляется на 0-ом и 1-ом контактах, используется класс Serial1.

Интерфейс TWI: 2-ой (SDA) и 3-ий (SCL) контакты. Коммуникация типа TWI, осуществляемая при помощи библиотеки Wire.

Внешние прерывания: 3-ий (прерывание 0), 2-ой (прерывание 1), 0-ой (прерывание 2), 1-ый (прерывание 3) и 7-ой (прерывание 4) контакты

Эти контакты можно настроить на запуск прерывания при переходе в значение LOW, возрастающем/ниспадающем фронте импульса или изменении значения. Более подробно читайте в статье о функции attachInterrupt().

ШИМ: 3-ий, 5-ый, 6-ой, 9-ый, 10-ый, 11-ый и 13-ый контакты. Обеспечивают выдачу ШИМ при помощи функции analogWrite().

Интерфейс SPI: на гребешке ICSP. Эти контакты осуществляют коммуникацию типа SPI при помощи библиотеки SPI. Обратите внимание, что контакты SPI не подключены ни к одному I/O контакту, как это сделано на Uno, и доступны только на ICSP-коннекторе. Это значит, что если у вас есть «шилд», использующий интерфейс SPI, но НЕ ИМЕЮЩИЙ 6-контактного ICSP-коннектора, который можно было бы подключить к 6-контактному ICSP-гребешку на Leonardo, то этот «шилд» работать не будет.

Встроенный светодиод: 13-ый контакт. Если подать на этот контакт значение HIGH, светодиод включится, а если LOW, то выключится.

Входные аналоговые контакты: с A0 по A5 (там же, где у Uno), а также с A6 по A11 (на 4-ом, 6-ом, 8-ом, 9-ом, 10-ом и 12-ом контактах). Плата Leonardo имеет 12 входных аналоговых контактов, названных с A0 по A11, и каждый из них можно также использовать в качестве цифровых I/O контактов. Каждый из этих контактов поддерживает 10-битное разрешение (т.к. позволяет оперировать 1024 разными значениями). По умолчанию диапазон напряжения на этих контактах составляет от 5 вольт до «земли», однако его верхнюю границу можно поменять при помощи контакта AREF и функции analogReference().

На Leonardo есть и другие специализированные контакты:

  • AREF – эталонное напряжение для входных аналоговых контактов. Используется вместе с функцией analogReference().
  • Reset – сброс микроконтроллера. Чтобы сбросить микроконтроллер, на этот контакт нужно подать значение LOW. Как правило, используется, чтобы добавить на «шилд» кнопку Reset, потому что подключение «шилда» блокирует кнопку сброса на самой плате.

8 или 32 бита

Основные сражения происходят между 8 и 32 битными платами.

8-бит: Uno, Nano, and Mega

32-бит: Zero, MKR, ESP8266 и ESP32

В отличие от ранних видеоигровых консолей, выбор процессора не так прост, и не ограничивается только выбором количества бит. В целом, 8-битные процессоры предлагают базовые возможности при потреблении более низкой энергии.

Более простые архитектуры означают, что регистры прямого программирования, как правило, относительно легки. 32-разрядные процессоры предлагают более высокие тактовые частоты вместе с большим количеством ОЗУ, ПЗУ и последовательной периферии. Их архитектура может усложнить программирование. К счастью, такие структуры, как библиотека Arduino и CircuitPython, зарывают большую часть этой сложности.

Выбор микропроцессора только потому, что он является 8-битным или 32-битным, может быть, скажем так, довольно «близоруким»

Поэтому важно подумать о том, как вы планируете использовать его

Допустим, вы уже в курсе, как обращаться с проводами, контактами и микросхемами. Поэтому разберемся с самыми популярными платами на сегодняшний день.

Аrduino nano распиновка

Аrduino nano распиновка — в этой статье хочу уделить немного внимания аппаратной основе плат семейства Arduino Nano. Вариации аппаратного исполнения я описал под фото.


Распиновка Arduino Nano.

Питание

Arduino Nano может быть запитан через кабель mini(micro)-USB, от внешнего источника питания с нестабилизированным напряжением 6-20 В (через вывод 30, подавать на этот вывод больше 12 В настоятельно не рекомендуется) либо со стабилизированным напряжением 5В (через вывод 27). Устройство автоматически выбирает источник питания с наибольшим напряжением.

Напряжение на микросхему FTDI FT232RL подается только в случае питания Arduino Nano через USB. Поэтому при питании устройства от других внешних источников (не USB), выход 3.3 В (формируемый микросхемой FTDI) будет неактивен, в результате чего светодиоды RX и TX могут мерцать при наличии высокого уровня сигнала на выводах 0 и 1.

Входы и выходы

Каждый из 20 (0-19, на схеме аrduino nano распиновка помещены в сиреневые параллелограммы, на той же схеме в серых параллелограммах указаны выводы микроконтроллера) цифровых выводов Arduino Nano может работать в качестве входа или выхода. Рабочее напряжение выводов — 5В. Максимальный ток, который может отдавать один вывод, составляет 40 мА, но нагружать выходы более, чем на 20 мА не рекомендуется. При этом суммарная нагрузка по всем выводам не должна превышать 200 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Помимо основных, некоторые выводы Arduino Nano могут выполнять дополнительные функции:

Последовательный интерфейс:

Последовательный интерфейс: выводы 0 (RX) и 1 (TX). Используются для получения (RX) и передачи (TX) данных по последовательному интерфейсу. Эти выводы соединены с соответствующими выводами микросхемы-преобразователя USB-UART от FTDI.

Внешние прерывания: выводы 2 и 3. Данные выводы могут быть сконфигурированы в качестве источников прерываний, возникающих при различных условиях: при низком уровне сигнала, по фронту, по спаду или при изменении сигнала. Для получения дополнительной информации см. функцию attachInterrupt().

ШИМ: выводы 3, 5, 6, 9, 10 и 11. С помощью функции analogWrite() могут выводить 8-битные аналоговые значения в виде ШИМ-сигнала.

Интерфейс SPI: выводы 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Данные выводы позволяют осуществлять связь по интерфейсу SPI. В устройстве реализована аппаратная поддержка SPI.

Светодиод: вывод 13. Встроенный светодиод, подсоединенный к цифровому выводу 13. При отправке значения HIGH светодиод включается, при отправке LOW — выключается.

I2С: выводы 4 (SDA) и 5 (SCL). С использованием библиотеки Wire (документация на веб-сайте Wiring) данные выводы могут осуществлять связь по интерфейсу I2C (TWI).

Помимо перечисленных на плате существует еще несколько выводов:

AREF. Опорное напряжение для аналоговых входов. Может задействоваться функцией analogReference().

Reset. Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения.

Аналоговые входы A0-А7: входы с 10-битным аналого-цифровым преобразователем (АЦП). Напряжение поданное на аналоговый вход, обычно от 0 до 5 вольт будет преобразовано в значение от 0 до 1023, это 1024 шага с разрешением 0.0049 Вольт. Источник опорного напряжения может быть изменен.

Среда программирования Arduino IDE поддерживает работу не со всеми устройствами, входящими в состав микроконтроллера. Например, остался без внимания аналоговый компаратор. Пользоваться им можно, но придется напрямую обращаться к регистрам.

Схема соединений разъёмов J1 и J2.

Схема соединений микроконтроллера. В качестве МК могут быть применены ATMega 328P или ATMega 168P.

Схема соединений преобразователя USB-UART.

Есть версии плат с микросхемами CH340G(более капризные), в оригинальной версии стоит FT232RL. В базовой версии устанавливается разъём mini-USB, но попадаются версии и с более удобным разъёмом micro-USB.

Соединения цепей питания и разъёма ICSP. Есть версии плат с номинальным напряжением питания 5 В или 3,3 В.

Introduction to Arduino Leonardo

  • Arduino Leonardo is a microcontroller board developed by Arduino.cc. It is based on the ATmega32U4 and comes with 23 digital input/output pins that are enough to connect with external devices and turn your innovation into reality.
  • The Microcontroller on the board incorporates a built-in USB communication, setting you free from the use of a secondary processor. The USB communication helps Leonardo disguise the mouse or keyboard when it is connected to a computer.
  • The module supports the crystal oscillator with the frequency up to 16 MHz that is enough to generate clock pulses with decent pace required for the synchronization of all the internal operations.

This board supports common communication protocol like UART, SPI, and I2C. The UART is a serial communication protocol mainly used for transferring and receiving serial data using two pins called TX and RX.

Serial Peripheral Interface (SPI) is a third communication protocol added on the board that is commonly used to send data between microcontrollers and small peripherals such as sensors, shift registers, and SD cards using separate clock and data lines, layered with a select line to pick the device for communication.

Сравнение с Arduino Uno, Nano, Mega

В отличие от предшественников плата Arduino Leonardo работает всего на оном чипе. Здесь появился независимый разъем USB. В основе лежит микроконтроллер ATmega32u4, имеющий больший функционал по сравнению с Mega, Nano и Uno.

Дополнительные отличия:

  • из-за отсутствия отдельной микросхемы для обработки последовательной связи последовательные порты имеют виртуальный характер;
  • при открытии последовательного порта на ПК автоматического перезапуска не происходит;
  • устройство может определяться ПК как последовательный порт, мышка, клавиатура или HID-устройство.

В модели Леонардо увеличился объем оперативной памяти, стало больше входов ШИМ. Но главное изменение — возможность подключения устройства через USB-разъем, что существенно повысило удобство подключения и функционал платформы.

Дополнительные порты ввода/вывода

В ATmega328PB добавлен дополнительный 4-битный порт ввода/вывода PORTE (Таблица 1). Две линии ввода/вывода PE2 (вывод 19) и PE3 (вывод 22) мультиплексированы с входами АЦП ADC6 и ADC7. Выводы 3 (GND в ATmega328) и 6 (VCC в ATmega328) заменены на линии ввода/вывода PE0 и PE1, соответственно, при этом PE0 выполняет альтернативную функцию выходного канала аналогового компаратора ACO.

Таблица 1. Функциональные отличия портов
ввода/вывода ATmega328PB
Выводы корпуса
TQFP/MLF
ATmega328 ATmega328PB
3 GND PE0/ACO
6 VCC PE1
19 ADC6 ADC6/PE2
22 ADC7 ADC7/PE3

ATmega328PB стал первым 8-разрядным МК семейства AVR с интегрированным контроллером сенсорного интерфейса QTouch (Peripheral Touch Controller, PTC), обрабатывающим сигналы емкостных сенсоров для определения касания. Как правило, внешние емкостные сенсоры формируются на печатной плате, а их электроды подключаются непосредственно к аналоговому интерфейсу PTC посредством мультиплексирования линий ввода/вывода в микроконтроллере. PTC поддерживает режимы работы как с определением собственной емкости сенсоров, так взаимной.

Первый режим обеспечивает возможность подключения к МК 24 сенсорных кнопок, второй – 144 кнопок. Отлично зарекомендовавшая себя технология QTouch и гибкость настроек контроллера позволяют использовать одновременно оба типа сенсоров, при этом для одного электрода требуется один вывод микроконтроллера. Аппаратная фильтрация, автоматическая калибровка и рекалибровка сенсоров, встроенные схемы компенсации паразитной емкости и регулировка чувствительности повышают надежность сенсорного интерфейса и исключают необходимость использования каких-либо внешних компонентов (Рисунок 2).

Рисунок 2. Блок-схема контроллера QTouch в режиме определения
собственной емкости сенсоров.

Разработка и отладка сенсорного интерфейса для приложений на МК ATmega328PB поддерживается программной средой QTouch Composer с библиотекой QTouch Library, в которой можно создавать различные комбинации сенсорных кнопок, слайдеров, колес и датчиков приближения.

Оцените статью:
Оставить комментарий