Полупроводники – это?

С открытием полупроводников и изучением их свойств стало возможным создание схем на диодах и транзисторах. Вскоре из-за лучших эксплуатационных характеристик и меньших размеров они вытеснили электронные лампы, затем стало возможным производить интегральные микросхемы на основе полупроводниковых элементов.

Полупроводниковые элементы в микросхемах

Полупроводниковые элементы в микросхемах

Что такое полупроводники

Дать определение полупроводникам – это охарактеризовать их с точки зрения способности к проведению электротока. У данных кристаллических веществ увеличивается электропроводность при возрастании температуры, воздействии света, присутствии различных примесей.

Полупроводники бывают широкозонные и узкозонные, что обуславливает свойства полупроводниковых материалов. От ширины запрещенной зоны, измеряемой в электронвольтах (эВ), зависит электропроводность. Этот параметр можно представить как энергию, которая требуется электрону для проникновения в зону проведения электротока. В среднем для полупроводников она 1 эВ, может быть больше или меньше.

Если правильность кристаллической решетки полупроводников нарушается чужеродным атомом, то такая проводимость будет примесной. Когда полупроводниковые вещества предназначены для создания элементов микросхемы, в них специально добавляют примеси, которые образуют повышенные скопления дырок или электронов:

  • донорные – с большей валентностью, отдают электроны;
  • акцепторные – с меньшей валентностью, забирают электроны, образуя дырки.

Важно! Главный фактор, влияющий на электропроводность проводников, – температура.

Как обеспечивается проводимость

Примерами полупроводников являются кремний, германий. В кристаллах этих веществ атомы имеют ковалентные связи. Когда растет температура, некоторые электроны могут освобождаться. После этого атом, потерявший электрон, становится положительно заряженным ионом. А электрон, не будучи способным перейти к другому атому из-за насыщенности связей, оказывается свободным. Под воздействием электрического поля освободившиеся электроны могут двигаться в направленном потоке.

Ион, потерявший электрон, стремится «отобрать» другой у ближайшего атома. Если у него это получается, то уже этот атом остановится ионом, в свою очередь, пытаясь заместить потерянный электрон. Таким образом, происходит движение «дырок» (положительных зарядов), которое тоже может стать упорядоченным в электрическом поле.

Собственная проводимость полупроводников

Собственная проводимость полупроводников

Повышенная температура позволяет электронам энергичнее освобождаться, что приводит к уменьшению сопротивления полупроводника и возрастанию проводимости. Электроны и дырки соотносятся примерно в равных пропорциях в беспримесных кристаллах, такая проводимость называется собственной.

Проводимость p-типа и n-типа

Примесные виды проводимости подразделяются на:

  1. Р-типа. Образуется при добавлении акцепторной примеси. Более низкая валентность примеси вызывает формирование повышенного числа дырок. Для четырехвалентного кремния такой примесью может служить трехвалентный бор;
  2. N-типа. Если к кремнию добавить пятивалентную сурьму, то в полупроводнике возрастет число освободившихся электронов-носителей отрицательного заряда.
Примесная проводимость полупроводников

Примесная проводимость полупроводников

Полупроводниковые элементы в основном функционируют на основе особенностей p-n-перехода. Когда два материала с разным типом проводимости привести в соприкосновение, на границе между ними будет происходить взаимопроникновение электронов и дырок в противоположные зоны.

Важно! Процесс взаимообмена полупроводниковых материалов положительными и отрицательными зарядоносителями имеет временные границы – до формирования запирающего слоя.

Носители положительного и отрицательного заряда накапливаются в соединенных частях, с двух сторон от линии соприкосновения. Возникающая разность потенциалов может достигать 0,6 В.

Когда элемент с p-n-переходом попадает в электрическое поле, его проводимость будет зависеть от подключения источника питания (ИП). При «плюсе» на части с р-проводимостью и «минусе» на части с n-проводимостью запирающий слой уничтожится, и через переход пойдет ток. Если ИП подключить противоположным образом, запирающий слой еще больше увеличится и пропустит электроток ничтожно малой величины.

Важно! Р-n-переход обладает односторонней проводимостью.

Р-n-переход

Р-n-переход

Использование полупроводников

На основе свойств полупроводников созданы различные приборы, применяющиеся в радиотехнике, электронике и других областях.

Диод

Односторонняя проводимость полупроводниковых диодов определила область их применения – в основном, при выпрямлении переменного тока. Другие виды диодов:

  1. Туннельный. В нем применяются полупроводниковые материалы с таким содержанием примесей, что ширина p-n-перехода резко уменьшается, и становится возможным эффект туннельного пробоя при прямом включении. Используются в ВЧ-устройствах, генераторах, технике для измерений;
  2. Обращенный. Несколько измененный туннельный диод. При прямом подключении напряжение, его открывающее, намного ниже в сравнении с классическими диодами. Это предопределяет использование туннельного диода для преобразования токов малых напряжений;
  3. Варикап. Когда p-n-переход закрыт, его емкость достаточно высока. Варикап используется как конденсатор, емкость которого можно варьировать изменением напряжения. Емкость будет снижаться, если обратное напряжение растет;
Варикап

Варикап

  1. Стабилитрон. Подключается параллельно, стабилизирует напряжение на заданном участке;
  2. Импульсный. Из-за коротких переходных процессов применяются для импульсных ВЧ-схем;
  3. Лавинно-пролетный. Используется для генерации колебаний сверхвысокой частоты. В основе – лавинообразное размножение зарядоносителей.

Диод Шоттки

Этот диод состоит не из двух полупроводниковых материалов, вместо этого полупроводник контактирует с металлом. Так как металл не имеет кристаллическую структуру, дырок в нем быть не может. Значит, в месте соприкосновения его с полупроводниковым материалом к проникновению способны только электроны с обеих сторон, совершая работу выхода. Это становится возможным, когда:

  • имеется полупроводник n-типа, и работа выхода его электронов меньше, чем у металла;
  • имеется полупроводник р-типа с работой выхода его электронов большей, чем у металла.

В месте контакта полупроводник потеряет зарядоносители, проводимость его снизится. Создается барьер, который преодолевается прямым напряжением необходимого значения. Обратное напряжение практически запирает диод, работающий как выпрямитель. Диоды Шоттки из-за высокого быстродействия используются в импульсных схемах, в вычислительных устройствах, служат они и качестве силовых диодов для выпрямления тока значительной величины.

Диод Шоттки

Диод Шоттки

Транзистор

Практически ни одна микросхема не обходится без транзисторов, полупроводниковых элементов с двумя p-n-переходами. Транзисторный элемент имеет три выводных контакта:

  • коллектор;
  • база;
  • эммитер.

Если на базу подается маломощный сигнал управления, между коллектором и эммитером пропускается намного больший ток. Когда на базу сигнал не подается, ток не проводится. Таким образом, можно регулировать силу тока. Используется прибор для усиления сигнала и бесконтактной коммутации цепи.

Транзистор

Транзистор

Виды полупроводниковых транзисторов:

  1. Биполярные. Обладают положительными и отрицательными зарядоносителями. Протекающий ток способен проходить в прямом и обратном направлении. Применяются в качестве усилителей;
  2. Полевые. Их выводы называются сток, исток, затвор. Управление производится посредством электрического поля определенной полярности. Сигнал, подаваемый на затвор, может изменять проводимость транзистора. Зарядоносители в полевых приборах могут быть только с одним знаком: положительные либо отрицательные. Мощные полевые транзисторы используются в усилителях звука. Основное их применение – интегральные схемы. Компактные размеры и малое энергопотребление делают возможным устанавливать их в приборах с источниками напряжения малой мощности (часы);
  3. Комбинированные. Могут располагаться совместно с другими транзисторными элементами, резисторами в одной монолитной структуре.

Легирование полупроводников

Легирование – это введение примесных элементов, донорных и акцепторных, в кристаллы полупроводников для регулирования их проводимости. Это происходит в период выращивания кристаллов или путем местного внедрения в отдельных зонах.

Применяемые методы:

  1. Высокотемпературная диффузия. Полупроводниковый кристалл разогревают, и примесные атомы, находящиеся в контакте с его поверхностью, попадают вглубь. В некоторых узлах кристаллической решетки примесные атомы замещают атомы основного вещества;
  2. Ионная имплантация. Происходят ионизация и ускорение примесных атомов, которые бомбардируют монокристалл, создавая местные неоднородности и формируя p-n-переходы;
  3. Лазерное облучение. Преимущество способа в том, что, используя направленное излучение, отдельные участки можно разогреть до любых температурных значений, что облегчает ввод примесей;
  4. Нейтронное легирование. Применяется сравнительно недавно. Заключается в облучении монокристалла тепловыми нейтронами в реакторе, в результате чего происходит мутация атомных ядер. Атомы кремния преобразуются в фосфорные.

Существуют и другие способы легирования: химическое травление, создание тонких пленок путем напыления.

Как получают полупроводники

Главным в получении полупроводников является их очистка от ненужных примесей. Среди множества способов их получения можно выделить два, наиболее часто применяемых:

  1. Зонная плавка. Процесс осуществляется в запаянном кварцевом контейнере, куда подается инертный газ. Расплавляется узкая зона слитка, которая постепенно перемещается. В процессе плавления примеси перераспределяются и рекристаллизируются, выделяя чистую часть;
  2. Метод Чохральского. Заключается в выращивании кристалла из затравки путем постепенного вытягивания из расплавленного состава.
Выращивание кристалла методом Чохральского

Выращивание кристалла методом Чохральского

Разновидности полупроводниковых материалов

Различия в составе определяют область применения полупроводников:

  1. К простым – относятся однородные вещества, применяющееся самостоятельно, а также в качестве примесей и составляющих частей сложных материалов. Кремний, селен и германий используются самостоятельно. Бор, сурьма, теллур, мышьяк, сера, иод служат добавками;
  2. Сложные материалы представляют собой химические соединения из двух или нескольких элементов: сульфиды, теллуриды, карбиды;
  3. Оксиды кобальта, меди, европия используются в выпрямительных и фотоэлементах;
  4. Органические полупроводники: индол, акридон, флавантрон, пентацен. Одна из областей их использования – оптическая электроника;
  5. Магнитные полупроводники. Это ферромагнетические материалы, например, сульфид и оксид европия, а также антиферромагнетические – оксид никеля, теллурид европия. Применяются в радиотехнике, оптических устройствах, управляемых магнитным полем.

Сейчас трудно назвать область техники, где не было бы полупроводниковых материалов, используемых в том числе при отсутствии p-n-перехода, например, термосопротивления в температурных датчиках, фотосопротивления в пультах ДУ и другие.

Видео

https://www.youtube.com/watch?v=6o-oBILY5ds

Оцените статью:
Оставить комментарий