Напряженность электрического поля
Содержание
Силы, действующие на дистанции, иногда называются силами поля. Если зарядить объект, то он создаст электрическое поле – область с изменившимися характеристиками, его окружающую. Произвольный заряд, попавший в зону электрического поля, будет подвергаться действию его сил. На эти силы влияют степень заряженности объекта и дистанция до него.
Силы и заряды
Допустим, имеется какой-то изначальный электрозаряд Q, создающий электрическое поле. Сила этого поля измеряется электрозарядом, пребывающим в непосредственной близости. Этот электрозаряд именуют тестовым, поскольку он служит в качестве испытательного при определении напряженности и слишком маленький для влияния на создаваемое ЭП.
Контрольный электрозаряд будет именоваться q и обладать каким-то количественным значением. Когда его помещают в электрическое поле, он подвергается действующим притягивающим или отталкивающим силам F.
В качестве формулы напряженности электрического поля, обозначенной латинской буквой E, служит математическая запись:
E = F/q.
Сила измеряется в ньютонах (Н), заряд – в кулонах (Кл). Соответственно, для напряженности используется единица – Н/Кл.
Другой часто используемой на практике единицей для однородных ЭП служит В/м. Это следствие формулы:
E = U/d.
То есть E зависит от напряжения ЭП (разности потенциалов между двумя его точками) и расстояния.
Зависит ли напряженность от количественного значения электрозаряда? Из формулы можно видеть, что увеличение q влечет уменьшение Е. Но согласно закону Кулона, больший заряд также означает большую электрическую силу. Например, двукратное увеличение электрозаряда вызовет двукратное увеличение F. Следовательно, изменения напряженности не произойдет.
Как направлен вектор электрического поля
Для векторной величины обязательно применяется две характеристики: количественное значение и направление. На изначальный заряд действует сила, направленная к нему либо в противоположную сторону. Выбор достоверного направления определяется зарядным знаком. Чтобы разрешить вопрос, в какую сторону направляются линии напряженности, было принято направление силы F, воздействующей на положительный электрозаряд.
Наглядное отображение векторных величин ЭП производится посредством силовых линий. Смоделированный образец ЭП может состоять из бесконечного числа линий, которые располагаются по определенным правилам, дающим как можно больше информации о характере ЭП.
Правила вычерчивания силовых линий:
- Сильнейшим электрическим полем обладают электрозаряды большей величины. На схематическом рисунке это может быть показано увеличением частоты линий;
- В областях соединения с поверхностью объекта линии всегда ей перпендикулярны. На поверхности объектов правильной и неправильной формы никогда не существует электрической силы, параллельной ей. При существовании такой силы любой избыточный заряд на поверхности начал бы движение, и возник бы электрический ток внутри объекта, что никогда не бывает в статическом электричестве;
- При покидании поверхности объекта сила может менять направление из-за влияния ЭП других зарядов;
- Электрические линии не должны пересекаться. Если они пересекаются в какой-то точке пространства, тогда в этом пункте должно существовать два ЭП с собственным индивидуальным направлением. Это невыполнимое условие, так как каждое место ЭП имеет свою напряженность и направление, с ним связанное.
Силовые линии для конденсатора будут идти перпендикулярно пластинам, но у краев приобретать выпуклость. Это свидетельствует о нарушении однородности ЭП.
Учитывая условие о положительном электрозаряде, можно определиться с направлением вектора напряженности электрического поля. Этот вектор направлен в сторону силы, действующей на электрозаряд со знаком «плюс». В ситуациях, когда ЭП создается несколькими электрозарядами, вектор находится как результат геометрического суммирования всех сил, воздействиям которых подвержен испытательный заряд.
В то же время под линиями напряженности электрического поля понимается совокупность линий в зоне действия ЭП, касательными к которым будут в любом произвольном пункте векторы Е.
Если создается ЭП от двух и более зарядов, появляются линии, окружающие их конфигурацию. Такие построения являются громоздкими и выполняются с помощью компьютерной графики. При решении практических задач используется результирующий вектор напряженности электрического поля для заданных точек.
Закон Кулона
Закон Кулона определяет электрическую силу:
F = (K x q x Q)/r², где:
- F – электрическая сила, направленная по линии между двумя электрозарядами;
- К – постоянная пропорциональности;
- q и Q – количественные величины зарядов (Кл);
- r – дистанция между ними.
Постоянную пропорциональность находят из соотношения:
K = 1/(4π x ε).
Величина постоянной зависит от среды, в которой располагаются заряды (диэлектрическая проницаемость).
Тогда F =1/(4π x ε) х (q x Q)/r² .
Закон действует в природной среде. Для теоретического расчета изначально предполагается, что электрозаряды находятся в свободном пространстве (вакууме). Тогда значение ε = 8,85 х 10(в -12 степени), а K = 1/(4π x ε) = 9 х 10(в 9 степени).
Чтобы вычислить модуль напряженности, нужно подставить в формулу для Е математическое выражение закона Кулона:
E = F/q = 1/(4π x ε) х (q x Q)/(r² x q) = 1/(4π x ε) х Q/r²,
где Q – исходный заряд, создающий ЭП.
Чтобы найти напряженность ЭП в конкретной точке, надо разместить в этой точке пробный заряд, определить дистанцию до него и вычислить E по формуле.
Закон обратных квадратов
В формульном отображении закона Кулона дистанция между электрозарядами появляется в уравнении как 1/r². Значит, будет справедливым применение закона обратных квадратов. Другим известным таким законом является закон гравитации Ньютона.
Это выражение иллюстрирует, как изменение одной переменной может повлиять на другую. Математическая запись закона:
Е1/Е2 = r2²/r1².
Значение напряженности поля зависит от местоположения выбранной точки, его величина уменьшается с удалением от заряда. Если взять напряженности ЭП в двух разных точках, то отношение их количественного значения будет находиться в обратно пропорциональной зависимости от квадратов расстояния.
Для измерения напряженности ЭП в практических условиях существуют специальные приборы, например, тестер VX 0100.