Емкостное сопротивление

Под емкостным сопротивлением понимается особый характер противодействия переменному току, наблюдаемый в цепях с электрической ёмкостью. При этом емкостное сопротивление конденсатора зависит не только от включённых в цепь элементов, но и от параметров протекающего в ней тока (смотрите рисунок ниже).

Зависимость ёмкостного сопротивления от частоты

Зависимость ёмкостного сопротивления от частоты

Отметим также, что конденсатор относится к категории реактивных элементов, потери энергии на которых в цепи переменного тока не происходит.

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Xс=1/ ω C.

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Векторное представление ёмкости

Для получения более чёткого представления о том, что такое ёмкостное сопротивление, можно воспользоваться векторным представлением протекающих в конденсаторе процессов.

Векторное представление

Векторное представление

После изучения диаграммы можно заметить, что ток в цепи конденсатора меняет фазу с опережением напряжения на 90 градусов. Из характера взаимодействия основных электрических величин делается вывод о том, что конденсатор оказывает сопротивление изменению напряжения на нём.

Чем больше ёмкость, тем медленнее происходит её перезарядка до полного напряжения (и тем меньше ёмкостное сопротивление данного элемента). Этот вывод полностью совпадает с приведённой ранее формулой.

Дополнительная информация. При исследовании включенных в цепи переменного тока индуктивностей обнаруживается обратная закономерность, когда ток, наоборот, отстаёт по фазе от изменений напряжения.

Отметим, что в обоих случаях наблюдаемые различия в фазных параметрах указывают на реактивный характер сопротивления этих элементов.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения.

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует.

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Схема для расчёта ёмкостного сопротивления

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Свойства емкостей

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Видео

Оцените статью:
Оставить комментарий