Электромеханический стабилизатор напряжения

Качество питающей сети бытового напряжения порой оставляет желать лучшего. Особенно это заметно в удаленных от городов населенных пунктах. Вызывается это, в основном, низким качеством линий электропередач и неравномерной нагрузкой. Часто значение нестабильного напряжения выходит за пределы допустимых значений для бытовой техники. Понижение напряжения может вызвать неработоспособность или некачественную работу техники, низкую яркость осветительных ламп, а превышение чревато перегоранием предохранителей и выходом из строя устройств различной сложности и стоимости.

Стабилизатор напряжения

Стабилизатор напряжения

Существует возможность привести значение напряжения к нормальному значению – это использование стабилизатора напряжения. Стабилизаторы переменного напряжения могут быть различной конструкции и использовать несколько принципов стабилизации:

  • Феррорезонансные. Практически не используются из-за искажений формы напряжения и высокого уровня электромагнитных помех, хотя имеют наилучшие параметры стабилизации и высокую надежность;
  • С переключающимися обмотками. Могут быть на основе электромагнитных реле или полупроводниковых элементов, тиристоров;
  • Электромеханические.

Принцип работы электромеханического стабилизатора

В основу данного устройства входит автотрансформатор с изменяемым коэффициентом трансформации. Выглядит это следующим образом.

На тороидальный трансформатор намотана обмотка изолированным проводом. На одном из торцов трансформатора изоляция с обмотки удалена. По этому участку передвигается токосъемный узел. Перемещая токосъемник по обмотке, добавляют или удаляют из работы часть витков. Благодаря этому меняется коэффициент трансформации. Точно так же устроен лабораторный автотрансформатор – ЛАТР.

ЛАТР

ЛАТР

Основное отличие автоматического стабилизатора заключается в том, что привод узла регулировки осуществляется при помощи электродвигателя, в качестве которого используется шаговый электромотор. Почему нельзя применять обычный двигатель? У простого электродвигателя невозможно контролировать угол поворота подвижной части – ротора или якоря. Шаговый же электропривод поворачивается на строго заданный угол в соответствии с количеством поданных импульсов.

Устройство

Однофазный электромеханический стабилизатор напряжения состоит из следующих узлов:

  • Собственно автотрансформатор;
  • Щеточный узел;
  • Сервопривод;
  • Блок контроля и управления;
  • Блок индикации;
  • Устройство внутреннего питания;
  • Устройство защиты.

В качестве дополнительных опций производители могут включать также фильтрующие элементы для защиты потребителей от помех, распространяющихся по сети переменного тока.

Автотрансформатор

Это самый габаритный и тяжелый узел. Мощность автотрансформатора определяет величину нагрузки, которая может достигать десятков киловатт. Достоинством автотрансформатора является то, что он не имеет раздельных первичных и вторичных обмоток. Вторичная обмотка является частью первичной. При равенстве входного и выходного напряжений трансформатор не играет никакой роли, лишь добавляя нагрузку в сеть в виде незначительного тока холостого хода.

Щеточный узел

Благодаря щеткам образуется контакт с витками обмотки трансформатора. Требованиями к щеточному узлу являются низкое трение для облегчения передвижения по обмотке, низкое переходное сопротивление и стойкость к износу.

Щетки являются самым ненадежным элементом сервоприводного стабилизатора напряжения. Срок службы токосъемных элементов даже при умеренной эксплуатации составляет несколько лет, после чего они подлежат замене.

Щеточный узел

Щеточный узел

Для изготовления щеток используется материал на основе графита. Свойствами графита являются его низкий коэффициент трения и низкое электрическое сопротивление. В то же время графит – довольно мягкий материал, и со временем щетки изнашиваются. Для равномерной выработки и снижения износа часто щетки выполняют в виде колес, которые перекатываются по виткам автотрансформатора.

Наличие переходного сопротивления между материалом щеток и витками трансформатора вызывает повышенное тепловыделение в месте контакта. Особенно велико сопротивление в тех частях обмотки, где щетки оказываются нечасто, например, при большом снижении или повышении входного напряжения, поскольку оголенные витки медного провода покрываются пленкой окислов от контакта с воздухом.

Для отвода излишков тепла щеточный узел снабжается ребристым радиатором охлаждения.

Сервопривод

Шаговый двигатель, который используется для привода щеточного узла, должен обладать высокой скоростью вращения и мощностью, достаточной для преодоления силы трения щеток, прижатых пружинами к обмотке. Разумеется, что чем выше мощность стабилизатора, тем габаритнее щетки и выше их трение об обмотки. Соответственно, мощность сервопривода должна быть также выше.

Сервопривод

Сервопривод

Блоки электроники

Электронно-управляющий блок осуществляет контроль величин входного и выходного напряжений. Чем больше величина рассогласования, тем большее количество импульсов должно быть подано на обмотку шагового электродвигателя. По мере проворачивания щеточного узла выходное напряжение все более приближается к номинальному значению. При точном совпадении подача управляющих импульсов прекращается полностью.

Блок индикации позволяет визуально контролировать состояние входного и выходного напряжений. Данные выводятся на цифровой индикатор или стрелочный прибор в дешевых моделях.

Устройство защиты производит отключение устройства от сети и нагрузки при выходе напряжения за пределы допустимых значений, а также при превышении допустимой нагрузки потребителей.

Для питания внутренней электронной схемы используется малогабаритный маломощный трансформатор, первичная обмотка которого рассчитана на весь допустимый диапазон входного напряжения.

Внутреннее устройство

Внутреннее устройство

Достоинства и недостатки

Однофазный электромеханический стабилизатор обладает целым рядом достоинств, благодаря которым пользуется спросом и выпускается различными производителями:

  • Один из самых высоких показателей точности стабилизации – может доходить до 2%;
  • Плавность регулировки и отсутствие скачков выходного напряжения, как в релейных и тиристорных стабилизаторах;
  • Отсутствие искажений формы питающего тока, что позволяет использовать стабилизатор для питания любых типов нагрузки;
  • Широкий диапазон значений входного напряжения;
  • Отсутствие электромагнитных помех. Тороидальные трансформаторы обладают минимальным полем рассеивания;
  • Высокие значения допустимой мощности нагрузки, которая определяется, в основном, габаритами и сечением провода обмотки автотрансформатора;
  • Средний ценовой диапазон.

Широкому распространению данного типа устройств препятствует крайне низкая скорость реакции на изменение напряжения. Это связано с использованием подвижных устройств. К примеру, изменение напряжения на 50 В потребует около 5 секунд для того, чтобы выходное напряжение стало равным номинальному. Такая величина в несколько раз выше, чем у релейного стабилизатора, не говоря о тиристорном.

Следует отметить и низкую надежность, которая определяется надежностью щеточного узла. Как уже было сказано, износ щеток вынуждает производить их периодическую замену. Надежность щеток даже ниже, чем у контактов реле в релейных стабилизаторах.

Важно! Наличие механического контакта щеток с обмотками может вызвать искрение, что приводит к образованию помех и не допускает применение электромеханических регуляторов в пожароопасных помещениях и взрывоопасной атмосфере.

Остальные элементы по своей надежности такие же, как и в остальных стабилизаторах.

Использование того или иного типов стабилизаторов определяется требованиями нагрузки и характеристиками сети. Электромеханический сервоприводный стабилизатор напряжения незаменим в тех случаях, когда недопустимы скачкообразные изменения напряжения, искажения его формы, но нестабильность по входу не предполагает резких изменений.

Видео

Оцените статью:
Оставить комментарий